

a p r i m e r
T H I R D E D I T I O N

The
Little SAS

®

Book

Lora D. Delwiche and Susan J. Slaughter

The correct bibliographic citation for this manual is as follows: Delwiche, Lora D. and Slaughter, Susan J.,
2003. The Little SAS� Book: A Primer, Third Edition. Cary, NC: SAS Institute Inc.

The Little SAS� Book: A Primer, Third Edition

Copyright © 2003, SAS Institute Inc., Cary, NC, USA

ISBN 1-59047-333-7

All rights reserved. Produced in the United States of America. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set
forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, November 2003

SAS Publishing provides a complete selection of books and electronic products to help customers use SAS
software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-
copy books, visit the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

CONTENTS

Acknowledgments ix

Introducing SAS Software x

About This Book xi

What’s New xiv

Chapter 1 Getting Started Using SAS� Software

1.1 The SAS Language 2

1.2 SAS Data Sets 4

1.3 The Two Parts of a SAS Program 6

1.4 The DATA Step’s Built-in Loop 8

1.5 Choosing a Mode for Submitting SAS Programs 10

1.6 Windows and Commands in the SAS Windowing Environment 12

1.7 Submitting a Program in the SAS Windowing Environment 14

1.8 Reading the SAS Log 16

1.9 Viewing Your Results in the Output Window 18

1.10 Creating HTML Output 20

1.11 SAS Data Libraries 22

1.12 Viewing Data Sets with SAS Explorer 24

1.13 Using SAS System Options 26

Chapter 2 Getting Your Data into SAS�

2.1 Methods for Getting Your Data into SAS 30

2.2 Entering Data with the Viewtable Window 32

2.3 Reading Files with the Import Wizard 34

2.4 Telling SAS Where to Find Your Raw Data 36

2.5 Reading Raw Data Separated by Spaces 38

2.6 Reading Raw Data Arranged in Columns 40

iv The Little SAS Book

2.7 Reading Raw Data Not in Standard Format 42

2.8 Selected Informats 44

2.9 Mixing Input Styles 46

2.10 Reading Messy Raw Data 48

2.11 Reading Multiple Lines of Raw Data per Observation 50

2.12 Reading Multiple Observations per Line of Raw Data 52

2.13 Reading Part of a Raw Data File 54

2.14 Controlling Input with Options in the INFILE Statement 56

2.15 Reading Delimited Files with the DATA Step 58

2.16 Reading Delimited Files with the IMPORT Procedure 60

2.17 Reading PC Files with the IMPORT Procedure 62

2.18 Reading PC Files with DDE 64

2.19 Temporary versus Permanent SAS Data Sets 66

2.20 Using Permanent SAS Data Sets with LIBNAME Statements 68

2.21 Using Permanent SAS Data Sets by Direct Referencing 70

2.22 Listing the Contents of a SAS Data Set 72

Chapter 3 Working with Your Data

3.1 Creating and Redefining Variables 76

3.2 Using SAS Functions 78

3.3 Selected SAS Functions 80

3.4 Using IF-THEN Statements 82

3.5 Grouping Observations with IF-THEN/ELSE Statements 84

3.6 Subsetting Your Data 86

3.7 Working with SAS Dates 88

3.8 Selected Date Informats, Functions, and Formats 90

3.9 Using the RETAIN and Sum Statements 92

3.10 Simplifying Programs with Arrays 94

3.11 Using Shortcuts for Lists of Variable Names 96

Contents v

Chapter 4 Sorting, Printing, and Summarizing Your Data

4.1 Using SAS Procedures 100

4.2 Subsetting in Procedures with the WHERE Statement 102

4.3 Sorting Your Data with PROC SORT 104

4.4 Printing Your Data with PROC PRINT 106

4.5 Changing the Appearance of Printed Values with Formats 108

4.6 Selected Standard Formats 110

4.7 Creating Your Own Formats Using PROC FORMAT 112

4.8 Writing Simple Custom Reports 114

4.9 Summarizing Your Data Using PROC MEANS 116

4.10 Writing Summary Statistics to a SAS Data Set 118

4.11 Counting Your Data with PROC FREQ 120

4.12 Producing Tabular Reports with PROC TABULATE 122

4.13 Adding Statistics to PROC TABULATE Output 124

4.14 Enhancing the Appearance of PROC TABULATE Output 126

4.15 Changing Headers in PROC TABULATE Output 128

4.16 Specifying Multiple Formats for Data Cells in PROC TABULATE Output 130

4.17 Producing Simple Output with PROC REPORT 132

4.18 Using DEFINE Statements in PROC REPORT 134

4.19 Creating Summary Reports with PROC REPORT 136

4.20 Adding Summary Breaks to PROC REPORT Output 138

4.21 Adding Statistics to PROC REPORT Output 140

Chapter 5 Enhancing Your Output with ODS

5.1 Concepts of the Output Delivery System 144

5.2 Tracing and Selecting Procedure Output 146

5.3 Creating SAS Data Sets from Procedure Output 148

5.4 Using ODS Statements to Create HTML Output 150

5.5 Using ODS Statements to Create RTF Output 152

5.6 Using ODS Statements to Create PRINTER Output 154

5.7 Customizing Titles and Footnotes 156

5.8 Customizing PROC PRINT Output with the STYLE= Option 158

vi The Little SAS Book

5.9 Customizing PROC REPORT Output with the STYLE= Option 160

5.10 Customizing PROC TABULATE Output with the STYLE= Option 162

5.11 Adding Traffic-Lighting to Your Output 164

5.12 Selected Style Attributes 166

Chapter 6 Modifying and Combining SAS� Data Sets

6.1 Modifying a Data Set Using the SET Statement 170

6.2 Stacking Data Sets Using the SET Statement 172

6.3 Interleaving Data Sets Using the SET Statement 174

6.4 Combining Data Sets Using a One-to-One Match Merge 176

6.5 Combining Data Sets Using a One-to-Many Match Merge 178

6.6 Merging Summary Statistics with the Original Data 180

6.7 Combining a Grand Total with the Original Data 182

6.8 Updating a Master Data Set with Transactions 184

6.9 Using SAS Data Set Options 186

6.10 Tracking and Selecting Observations with the IN= Option 188

6.11 Writing Multiple Data Sets Using the OUTPUT Statement 190

6.12 Making Several Observations from One Using the OUTPUT Statement 192

6.13 Changing Observations to Variables Using PROC TRANSPOSE 194

6.14 Using SAS Automatic Variables 196

Chapter 7 Writing Flexible Code with the SAS� Macro Facility

7.1 Macro Concepts 200

7.2 Substituting Text with Macro Variables 202

7.3 Creating Modular Code with Macros 204

7.4 Adding Parameters to Macros 206

7.5 Writing Macros with Conditional Logic 208

7.6 Writing Data-Driven Programs with CALL SYMPUT 210

7.7 Debugging Macro Errors 212

Contents vii

Chapter 8 Using Basic Statistical Procedures

8.1 Examining the Distribution of Data with PROC UNIVARIATE 216

8.2 Producing Statistics with PROC MEANS 218

8.3 Testing Categorical Data with PROC FREQ 220

8.4 Examining Correlations with PROC CORR 222

8.5 Using PROC REG for Simple Regression Analysis 224

8.6 Reading the Output of PROC REG 226

8.7 Using PROC ANOVA for One-Way Analysis of Variance 228

8.8 Reading the Output of PROC ANOVA 230

8.9 Graphical Interfaces for Statistical Analysis 232

Chapter 9 Exporting Your Data

9.1 Methods for Exporting Your Data 236

9.2 Writing Files Using the Export Wizard 238

9.3 Writing Delimited Files with the EXPORT Procedure 240

9.4 Writing PC Files with the EXPORT Procedure 242

9.5 Writing Raw Data Files with the DATA Step 244

9.6 Writing Delimited and HTML Files using ODS 246

9.7 Sharing SAS Data Sets with Other Types of Computers 248

Chapter 10 Debugging Your SAS� Programs

10.1 Writing SAS Programs That Work 252

10.2 Fixing Programs That Don’t Work 254

10.3 Searching for the Missing Semicolon 256

10.4 Note: INPUT Statement Reached Past the End of the Line 258

10.5 Note: Lost Card 260

10.6 Note: Invalid Data 262

10.7 Note: Missing Values Were Generated 264

10.8 Note: Numeric Values Have Been Converted to Character (or Vice Versa) 266

10.9 DATA Step Produces Wrong Results but No Error Message 268

viii The Little SAS Book

10.10 The DATA Step Debugger 270

10.11 Error: Invalid Option, Error: The Option Is Not Recognized,
 or Error: Statement Is Not Valid 272

10.12 Note: Variable Is Uninitialized or Error: Variable Not Found 274

10.13 SAS Truncates a Character Variable 276

10.14 SAS Stops in the Middle of a Job 278

10.15 SAS Runs Out of Memory or Disk Space 280

Appendices

A Where to Go from Here 284

B Getting Help from SAS Technical Support 286

C An Overview of SAS Products 288

D Coming to SAS from SPSS 291

E Coming to SAS from a Programming Language 298

F Coming to SAS from SQL 302

Index 309

Acknowledgments

As hard as we have worked on this book, we could never have done it alone. Many

people at SAS helped make this book what it is. To our many hard-working reviewers:

Carole Beam, Janice Bloom, Brent Cohen, Vicki Leary, Elizabeth Maldonado, Allison

McMahill, Sandy McNeill, Randy Poindexter, Morris Vaughan, and Deanna Warner,

we say, “Thanks for hanging in there with us.” To our copyeditor, Mary Beth

Steinbach, and our designer, Kris Rinne, “Thanks for making us look good.” To our

production specialist, Karen Perkins, “Thanks for rectifying all those wayward

footnotes, mysterious font errors, and uncooperative images.” And last but not least

we would like to thank—faster than a speeding deadline, stronger than Microsoft

Word, able to leap tall drafts in a single bound—our editor, Stephenie Joyner.

Outside the walls of SAS many other people also contributed to this book. In particular

we would like to thank our readers. We love meeting you at conferences even if we

seem a little shy. Without you, of course, there would be no reason to keep writing. To

her co-workers—Tim Allis, Dana Drennan, Paul Grant, and Steve Nichols—Lora

would like to say, “Thanks for being so flexible when I needed to take time off to

write.” Most of all we would like to thank our families for their understanding and

support.

x The Little SAS Book

Introducing SAS� Software

SAS software is used by people all over the world—in 118 countries, at over 40,000 sites, by more
than 3.5 million users. SAS (pronounced sass) is both a company and software. When people say
SAS, they sometimes mean the software running on their computers and sometimes mean the
company.

People often ask what SAS stands for. Originally the letters S-A-S stood for Statistical Analysis
System (not to be confused with Scandinavian Airlines System, San Antonio Shoemakers, or the
Society for Applied Spectroscopy). SAS products have become so diverse that a few years back SAS
officially dropped the name Statistical Analysis System, now outgrown, and became simply SAS.

SAS products The roots of SAS software reach back to the 1970s when it started out as a
software package for statistical analysis, but SAS didn’t stop there. By the mid-1980s SAS had
already branched out into graphics, online data entry and compilers for the C programming
language. In the 1990s the SAS family tree grew to include tools for visualizing data, administering
data warehouses, and building interfaces to the World Wide Web. In the new century, SAS has
continued to grow with products for cleansing messy data, and analyzing genetic data. Appendix
C, “An Overview of SAS Products,” lists the products available at the time this book was written.
Just as AT&T is now more than telephones and telegraphs, SAS is more than statistics.

While SAS has a diverse family of products, most of these products are integrated; that is, they can
be put together like building blocks to construct a seamless system. For example, you might use
SAS/ACCESS software to read data stored in an external database such as Oracle, analyze it using
SAS/ETS software (business planning, forecasting, and decision support), and then forward the
results in e-mail messages to your colleagues, all in a single computer program.

Operating environments SAS software runs in a wide range of operating environments.
You can take a program written on a personal computer and run it on a mainframe after
changing only the file-handling statements specific to each operating environment. And because
SAS programs are as portable as possible, SAS programmers are as portable as possible too. If
you know SAS in one operating environment, you can switch to another operating environment
without having to relearn SAS.

Licensing SAS products Most SAS software is licensed. Licensing software is like leasing it;
once a year you pay your rent. Licensing has one important advantage when compared with
buying: you automatically get each new release without an extra charge. Since SAS software is
continually being improved and new versions released, licensing is helpful.

SAS Learning Edition This modestly priced edition of SAS can be purchased (not licensed).
Designed for students and business professionals who are new to SAS, this is a full-featured
edition of SAS with some limitations. SAS Learning Edition is limited to 1,000 observations, expires
on a specific date, and does not include live technical support.

SASware Ballot SAS puts a high percentage of its revenue into research and development,
and each year SAS users help determine how that money will be spent by voting on the SASware
Ballot. The ballot is a list of suggestions for new features and enhancements. All SAS users are
eligible to vote and thereby influence the future development of SAS software. You can even make
your own suggestions for the SASware Ballot by mailing them to SAS or by sending e-mail to
suggest@sas.com. For further information about the SASware Ballot see
support.sas.com/techsup/news/sasware.html.

Introduction xi

 About This Book

Who needs this book This book is for all new SAS users in business, government, and
academia, or for anyone who will be conducting data analysis using SAS. You need no prior
experience with SAS software, but if you have some experience you may still find this book
useful for learning techniques you missed or for reference.

What this book covers This book introduces you to the SAS language with lots of practical

examples, clear and concise explanations, and as little technical jargon as possible. Most of the
features covered here come from Base SAS software, which contains the core of features used by
all SAS programmers. One exception is Chapter 8 which includes some procedures from
SAS/STAT software. Other exceptions appear in Chapters 2 and 9 which cover importing and
exporting data from other types of software; some methods require SAS/ACCESS for PC File
Formats software.

We have tried to include every feature of Base SAS software that a beginner is likely to need.
Some of you will be surprised that certain topics, such as macros, are included because macros
are normally considered advanced. But they appear here because sometimes new users need
them. However, that doesn’t mean that you need to know everything in this book. On the
contrary, this book is designed so you can read just those sections you need to solve your
problems. Even if you read this book from cover to cover, you may find yourself returning to
refresh your memory as new programming challenges arise.

What this book does not cover To use this book you need no prior knowledge of SAS,
but you must know something about your local computer and operating environment. The SAS
language is virtually the same from one operating environment to another, but some differences
are unavoidable. For example, every operating environment has a different way of storing and
accessing files. Also, some operating environments have more of a capacity for interactive
computing than others. Your employer may have rules limiting the size of files you can print.
This book addresses operating environments as much as possible, but no book can answer every
question about your local system. You must have either a working knowledge of your operating
environment or someone you can turn to with questions.

This book is not a replacement for the SAS Help and Documentation, or the many SAS manuals.
Sooner or later you’ll need to go to these sources to learn details not covered in this book. The
exact documentation available to you depends on which version of SAS you use. Starting with
SAS 9, the SAS OnlineDoc has been combined with the system help accessed via the Help menu,
giving you more detailed documentation at your fingertips. You can also purchase SAS
OnlineDoc on a separate CD.

We cover only a few of the many SAS statistical procedures. Fortunately, the statistical proce-
dures share many of the same statements, options, and output, so these few can serve as an
introduction to the others. Once you have read Chapter 8, we think that other statistical
procedures will feel familiar.

Unfortunately, a book of this type cannot provide a thorough introduction to statistical concepts
such as degrees of freedom, or crossed and nested effects. There are underlying assumptions
about your data that must be met for the tests to be valid. Experimental design and careful

xii The Little SAS Book

raw data file SAS data set

data

SAS output

Obs Lions Tigers Bears

1

2

3

4

selection of the models are critical. Interpretation of the results can often be difficult and
subjective. We assume that readers who are interested in statistical computing already know
something about statistics. People who want to use statistical procedures but are unfamiliar with
these concepts should consult a statistician, seek out an introductory statistics text, or, better yet,
take a course in statistics.

Modular sections Our goal in writing this book is to make learning SAS as easy and enjoyable

as possible. Let’s face it�SAS is a big topic. You may have already spent some time scratching
your head in front of a shelf full of SAS manuals, or staring at a screen full of online documentation
until your eyes become blurry. We can’t condense all of SAS into this little book, but we can
condense topics into short, readable sections.

This entire book is composed of two-page sections, each section a complete topic. This way,
you can easily skip over topics which do not apply to you. Of course, we think every section is
important, or we would not have included it. You probably don’t need to know everything in this
book, however, to complete your job. By presenting topics in short digestible sections, we believe

that learning SAS will be easier and more fun�like eating three meals a day instead of one giant
meal a week.

Graphics Wherever possible, graphic illustrations either identify the contents of the section
or help explain the topic. A box with rough edges indicates a raw data file, and a box with nice
smooth edges indicates a SAS data set. The squiggles inside the box indicate data—any old
data—and a period indicates a missing value. The arrow between boxes of these types means
that the section explains how to get from data that look like the one box to data that look like the
other. Some sections have graphics which depict printed output. These graphics look like a stack
of papers with headers printed at the top of the page.

Introduction xiii

Typographical conventions SAS doesn’t care whether your programs are written in
uppercase or lowercase, so you can write your programs any way you want. In this book, we
have used uppercase and lowercase to tell you something. The statements on the left below
show the syntax, or general form, while the statements on the right show an example of actual
statements as they might appear in a SAS program.

Syntax Example

PROC PRINT DATA = data-set-name; PROC PRINT DATA = bigcats;
 VAR variable-list; VAR Lions Tigers;

Notice that the keywords PROC PRINT, DATA, and VAR are the same on both sides and that
the descriptive terms data-set-name and variable-list on the syntax side have been replaced with an
actual data set name and variable names in the example.

In this book, all SAS keywords appear in uppercase letters. A keyword is an instruction to SAS
and must be spelled correctly. Anything written in lowercase italics is a description of what goes
in that spot in the statement, not what you actually type. Anything in lowercase or mixed case
letters (and not in italics) is something that the programmer has made up such as a variable
name, a name for a SAS data set, a comment, or a title. See section 1.2 for further discussion of
the significance of case in SAS names.

Indention This book contains many SAS programs, each complete and executable. Programs
are formatted in a way which makes them easy for you to read and understand. You do not have
to format your programs this way, as SAS is very flexible, but attention to some of these details
will make your programs easier to read. Easy-to-read programs are time-savers for you, or the
consultant you hire at $100 per hour, when you need to go back and decipher the program
months or years later.

The structure of programs is shown by indenting all statements after the first in a step. This is a
simple way to make your programs more readable, and it’s a good habit to form. SAS doesn’t
really care where statements start or even if they are all on one line. In the following program,
the INFILE and INPUT statements are indented, indicating that they belong with the DATA
statement:

* Read animals’ weights from file. Print the results.;
DATA animals;
 INFILE ’c:\MyRawData\Zoo.dat’;
 INPUT Lions Tigers;

PROC PRINT DATA = animals;
RUN;

Last, we have tried to make this book as readable as possible and, we hope, even enjoyable. Once
you master the contents of this small book you will no longer be a beginning SAS programmer.

 What’s New

This third edition of The Little SAS Book: A Primer includes features added since SAS 7—and there
are a lot of them. When we wrote the second edition, the basic structure of the Output Delivery
System (ODS) was in place, but few of its features were. Since then, flesh has been added to the
bones and ODS now has a multitude of destinations and options. So, we have added a new chapter
devoted entirely to ODS.

Exporting data is another greatly expanded topic. In previous editions we had a few scattered
sections describing how to get data out of SAS for use in other applications, but the number of
ways and number of types of files you can create has grown to the point that we felt a need to give
these topics a chapter all their own.

Other new topics are sprinkled throughout the book. For the first time we have included PROC
REPORT. In addition, we’ve expanded our coverage of the SAS Explorer window, the IMPORT
and EXPORT Wizards, Dynamic Data Exchange (DDE), direct-referencing of SAS data sets, and
PROC TABULATE. We’ve added more system options, and a section on advanced input with the
@’character’ column pointer and the colon modifier.

Most of the features in this edition are available with SAS 8.2; a few are new with SAS 9 or SAS 9.1.
We have tried to point out whenever a feature is new. So unless otherwise noted, you can assume
that everything in this book is available in SAS 8.2.

Here, listed by section, are the new topics:

The Output Delivery System

Section Feature

5.1 Basic concepts for understanding ODS.

5.2 ODS TRACE and ODS SELECT statements allow you to choose which parts of
output will be printed.

5.3 ODS OUTPUT statement allows you to save results from SAS procedures as SAS
data sets.

5.4-5.6 HTML, RTF, and PRINTER output can be created using ODS statements.

5.7 Titles and footnotes can be customized using the COLOR=, BCOLOR=, HEIGHT=,
JUSTIFY=, FONT=, BOLD, and ITALIC options.

5.8-5.10 STYLE= option in PROC PRINT, PROC REPORT, and PROC TABULATE allows you
to control almost any aspect of the appearance of your output.

5.11 Traffic-lighting draws attention to important values in reports by determining the
style of a cell based on its value.

5.12 Table of selected style attributes shows some of the most popular features that you
can control.

Introduction xv

Exporting data

Section Feature

9.1 Choices for exporting data are outlined.

9.2 Export Wizard is now the topic of a complete section.

9.4 PROC EXPORT can write files in Microsoft Excel or Microsoft Access formats.

9.6 ODS HTML and CSV can be used to create data for other applications. (ODS CSV
is new with SAS 9.)

9.7 Cross-Environment Data Access allows SAS to read SAS data sets created in other
operating environments.

PROC REPORT

Section Feature

4.17 PROC REPORT allows you to create both detail and summary reports.

4.18 DEFINE statement in PROC REPORT allows you to specify options for individual
variables determining how they will be used in the report.

4.19 GROUP and ACROSS usage types can be used to create summary groups in rows or
columns.

4.20 BREAK and RBREAK statements add summary breaks to PROC REPORT output.

4.21 Statistics can be requested in a COLUMN statement in PROC REPORT.

More on PROC TABULATE

Section Feature

4.14 FORMAT=, BOX=, and MISSTEXT= options in PROC TABULATE enhance the
appearance of your output.

4.15 Changing headers in a TABLE statement in PROC TABULATE creates a more
customized look.

4.16 FORMAT= option in a TABLE statement in PROC TABULATE allows you to specify
multiple formats for data cells.

Also new with this edition

Section Feature

1.5, 8.9 SAS Enterprise Guide provides a graphical user interface to many of the features
of SAS including statistical procedures.

1.10 HTML output can be easily created by changing a setting in the Preferences window.
HTML results appear in the Results Viewer window.

xvi The Little SAS Book

1.11, 1.12 SAS Explorer window allows you to create new SAS libraries and display SAS data
sets and their properties in a point-and-click environment.

1.13 ORIENTATION=, RIGHTMARGIN=, LEFTMARGIN=, TOPMARGIN=, and
BOTTOMMARGIN= system options give you more control over how your output
looks.

2.3 Import Wizard is now the topic of a complete section.

2.10 @’character’ column pointer and colon modifier make it possible to read messy raw
data such as web logs.

2.18 Dynamic Data Exchange is now the topic of a complete section.

2.21 Direct-referencing of permanent SAS data sets is now the topic of a complete
section.

4.7 Names for user-defined formats can be up to 32 characters long, beginning with SAS 9.

1

From King Richard III by William Shakespeare. Public domain.

‘‘ ’’
An honest tale speeds best

being plainly told.

WILLIAM SHAKESPEARE, KING RICHARD III

CHAPTER 1

Getting Started Using SAS� Software

1.1 The SAS Language 2

1.2 SAS Data Sets 4

1.3 The Two Parts of a SAS Program 6

1.4 The DATA Step’s Built-in Loop 8

1.5 Choosing a Mode for Submitting SAS Programs 10

1.6 Windows and Commands in the SAS Windowing Environment 12

1.7 Submitting a Program in the SAS Windowing Environment 14

1.8 Reading the SAS Log 16

1.9 Viewing Your Results in the Output Window 18

1.10 Creating HTML Output 20

1.11 SAS Data Libraries 22

1.12 Viewing Data Sets with SAS Explorer 24

1.13 Using SAS System Options 26

2 The Little SAS Book

1.1 The SAS Language

Many software applications are either menu driven, or command driven (enter a command�see
the result). SAS is neither. With SAS, you use statements to write a series of instructions called a
SAS program. The program communicates what you want to do and is written using the SAS
language. There are some menu-driven front ends to SAS, for example SAS Enterprise Guide
software, which make SAS appear like a point-and-click program. However, these front ends still
use the SAS language to write programs for you. You will have much more flexibility using SAS
if you learn to write your own programs using the SAS language. Maybe learning a new
language is the last thing you want to do, but be assured that although there are parallels
between SAS and languages you know (be they English or FORTRAN), SAS is much easier to
learn.

SAS programs A SAS program is a sequence of statements executed in order. A statement
gives information or instructions to SAS and must be appropriately placed in the program. An
everyday analogy to a SAS program is a trip to the bank. You enter your bank, stand in line, and
when you finally reach the teller’s window, you say what you want to do. The statements you
give can be written down in the form of a program:

I would like to make a withdrawal.
 My account number is 0937.
 I would like $200.
 Give me five 20s and two 50s.

Note that you first say what you want to do, then give all the information the teller needs to
carry out your request. The order of the subsequent statements may not be important, but you
must start with the general statement of what you want to do. You would not, for example, go
up to a bank teller and say, “Give me five 20s and two 50s.” This is not only bad form, but would
probably make the teller’s heart skip a beat or two. You must also make sure that all the
subsequent statements belong with the first. You would not say, “I want the largest box you
have” when making a withdrawal from your checking account. That statement belongs with “I
would like to open a safe deposit box.” A SAS program is an ordered set of SAS statements like
the ordered set of instructions you use when you go to the bank.

SAS statements As with any language, there are a few rules to follow when writing SAS
programs. Fortunately for us, the rules for writing SAS programs are much fewer and simpler
than those for English.

The most important rule is

Every SAS statement ends with a semicolon.

This sounds simple enough. But while children generally outgrow the habit of forgetting the
period at the end of a sentence, SAS programmers never seem to outgrow forgetting the semi-
colon at the end of a SAS statement. Even the most experienced SAS programmer will at least
occasionally forget the semicolon. You will be two steps ahead if you remember this simple rule.

Chapter 1: Getting Started Using SAS Software 3

Layout of SAS programs There really aren’t any rules about how to format your SAS
program. While it is helpful to have a neat looking program with each statement on a line by itself
and indentions to show the various parts of the program, it isn’t necessary.

�� SAS statements can be in upper- or lowercase.

�� Statements can continue on the next line (as long as you don’t split words in two).

�� Statements can be on the same line as other statements.

�� Statements can start in any column.

So you see, SAS is so flexible that it is possible to write programs so disorganized that no one can
read them, not even you. (Of course, we don’t recommend this.)

Comments To make your programs more understandable, you can insert comments into your

programs. It doesn’t matter what you put in your comments�SAS doesn’t look at it. You could put
your favorite cookie recipe in there if you want. However, comments are usually used to annotate
the program, making it easier for someone to read your program and understand what you have
done and why.

There are two styles of comments you can use: one starts with an asterisk (*) and ends with a
semicolon (;). The other style starts with a slash asterisk (/*) and ends with an asterisk slash (*/).
The following SAS program shows the use of both of these style comments:

* Read animals’ weights from file;
DATA animals;
 INFILE ’c:\MyRawData\Zoo.dat’;
 INPUT Lions Tigers;
PROC PRINT DATA = animals; /* Print the results */
RUN;

Since some operating environments interpret a slash asterisk (/*) in the first column as the end of a
job, be careful when using this style of comment not to place it in the first column. For this reason,
we chose the asterisk-semicolon style of comment for this book.

Errors People who are just learning a programming language often get frustrated because their
programs do not work correctly the first time they write them. To make matters worse, SAS errors
often come up in bright red letters, and for the poor person whose results turn out more red than
black, this can be a very humbling experience. You should expect errors. Most programs simply
don’t work the first time, if for no other reason than you are human. You forget a semicolon,
misspell a word, have your fingers in the wrong place on the keyboard. It happens. Often one small
mistake can generate a whole list of errors. Don’t panic if you see red.

4 The Little SAS Book

Id Name Height Weight

1 53 Susie 42 41

2 54 Charlie 46 55

3 55 Calvin 40 35

4 56 Lucy 46 52

5 57 Dennis 44 .

6 58 43 50

Observations
(Also Called

Rows)

Variables (Also Called Columns)

1.2 SAS Data Sets

Before you run an analysis, before you write a report, before you do anything with your data,
SAS must be able to read your data. Before SAS can analyze your data, the data must be in a
special form called a SAS data set.

1
 Getting your data into a SAS data set is usually quite simple

as SAS is very flexible and can read almost any data. Once your data have been read into a SAS
data set, SAS keeps track of what is where and in what form. All you have to do is specify the
name and location of the data set you want, and SAS figures out what is in it.

Variables and observations Data, of course, are the primary constituent of any data set. In
traditional SAS terminology the data consist of variables and observations. Adopting the terminol-
ogy of relational databases, SAS data sets are also called tables, observations are also called rows,
and variables are also called columns. Below you see a rectangular table containing a small data set.
Each line represents one observation, while Id, Name, Height, and Weight are variables. The data
point Charlie is one of the values of the variable Name and is also part of the second observation.

Data types Raw data come in many different forms, but SAS simplifies this. In SAS there are
just two data types: numeric and character. Numeric fields are, well, numbers. They can be
added and subtracted, can have any number of decimal places, and can be positive or negative.
In addition to numerals, numeric fields can contain plus signs (+), minus signs (-), decimal points
(.), or E for scientific notation. Character data are everything else. They may contain numerals,
letters, or special characters (such as $ or !) and can be up to 32,767 characters long.

If a variable contains letters or special characters, it must be character data. However, if it contains
only numbers, then it may be numeric or character. You should base your decision on how you will
use the variable.

2
 Sometimes data that consist solely of numerals make more sense as character data

than as numeric. ZIP codes, for example, are made up of numerals, but it just doesn’t make sense to
add, subtract, multiply, or divide ZIP codes. Such numbers make more sense as character data. In
the previous data set, Name is obviously a character variable, and Height and Weight are numeric.
Id, however, could be either numeric or character. It’s your choice.

1
There are exceptions. If your data are in a format written by another software product, you may be able to read your data

 directly without creating a SAS data set. For database management systems and spreadsheets, you may be able to use
 SAS/ACCESS software. See chapter 2 for more information. For SPSS you can use the SPSS data engine. See appendix D.

2
 If disk space is a problem, you may also choose to base your decision on storage size. You can use the LENGTH statement,

 discussed in section 10.15, to control the storage size of variables.

Chapter 1: Getting Started Using SAS Software 5

Missing data Sometimes despite your best efforts, your data may be incomplete. The value of a
particular variable may be missing for some observations. In those cases, missing character data are
represented by blanks, and missing numeric data are represented by a single period (.). In the
preceding data set, the value of Weight for observation 5 is missing, and its place is marked by a
period. The value of Name for observation 6 is missing and is just left blank.

Size of SAS data sets Prior to SAS 9.1, SAS data sets could contain up to 32,767 variables.
Beginning with SAS 9.1, the maximum number of variables in a SAS data set is limited by the

resources available on your computer�but SAS data sets with more than 32,767 variables cannot
be used with earlier versions of SAS. The number of observations, no matter which version of SAS
you are using, is limited only by your computer’s capacity to handle and store them.

Rules for SAS names You make up names for the variables in your data and for the data sets
themselves. It is helpful to make up names that identify what the data represent, especially for
variables. While the variable names A, B, and C might seem like perfectly fine, easy-to-type names
when you write your program, the names Sex, Height, and Weight will probably be more helpful
when you go back to look at the program six months later. Follow these simple rules when making
up names for variables and data set members:

�� Names must be 32 characters or fewer in length.
3

�� Names must start with a letter or an underscore (_).

�� Names can contain only letters, numerals, or underscores (_). No %$!*&#@, please.
4

�� Names can contain upper- and lowercase letters.

This last point is an important one. SAS is insensitive to case so you can use uppercase, lowercase

or mixed case�whichever looks best to you. SAS doesn’t care. The data set name heightweight is
the same as HEIGHTWEIGHT or HeightWeight. Likewise, the variable name BirthDate is the same
as BIRTHDATE and birThDaTe. However, there is one difference for variable names. SAS
remembers the case of the first occurrence of each variable name and uses that case when printing
results. That is why, in this book, we use mixed case for variable names but lowercase for other
SAS names.

Documentation stored in SAS data sets In addition to your actual data, SAS data sets
contain information about the data set such as its name, the date that you created it, and the
version of SAS you used to create it. SAS also stores information about each variable, including its
name, type (numeric or character), length (or storage size), and position within the data set. This
information is sometimes called the descriptor portion of the data set, and it makes SAS data sets
self-documenting.

3
Beginning with SAS 9, format names can also be 32 characters long, and informat names can be 31 characters (including the $

for character values). Prior to SAS 9, format names could be 8 characters while informat names could be 7 characters (also
including the $). Librefs and filerefs must be 8 characters or fewer in length, and member names for versioned data sets must be
28 characters or fewer.

4
It is possible to use special characters, including spaces, in variable names if you use the system option VALIDVARNAMES=ANY

 and a name literal of the form ‘variable-name’N. See the SAS Help and Documentation for details.

6 The Little SAS Book

PROC

A
DAT

1.3 The Two Parts of a SAS Program

SAS programs are constructed from two basic building blocks: DATA steps and
PROC steps. A typical program starts with a DATA step to create a SAS data set
and then passes the data to a PROC step for processing. Here is a simple program
that converts miles to kilometers in a DATA step and prints the results with a
PROC step:

DATA and PROC steps are made up of statements. A step may have as few as one or as many as

hundreds of statements. Most statements work in only one type of step�in DATA steps but not
PROC steps, or vice versa. A common mistake made by beginners is to try to use a statement in
the wrong kind of step. You’re not likely to make this mistake if you remember that DATA steps
read and modify data while PROC steps analyze data, perform utility functions, or print reports.

DATA steps start with the DATA statement, which starts, not surprisingly, with the word
DATA. This keyword is followed by a name that you make up for a SAS data set. The DATA
step above produces a SAS data set named DISTANCE. In addition to reading data from
external, raw data files, DATA steps can include DO loops, IF-THEN/ELSE logic, and a large
assortment of numeric and character functions. DATA steps can also combine data sets in just
about any way you want, including concatenation and match-merge.

Procedures, on the other hand, start with a PROC statement in which the keyword PROC is
followed by the name of the procedure (PRINT, SORT, or MEANS, for example). Most SAS
procedures have only a handful of possible statements. Like following a recipe, you use basically
the same statements or ingredients each time. SAS procedures do everything from simple sorting
and printing to analysis of variance and 3D graphics. Other SAS procedures perform utility
functions such as importing data files and data entry.

A step ends when SAS encounters a new step (marked by a DATA or PROC statement), a RUN
statement, or, if you are running in batch mode, the end of the program.1

 RUN statements tell
SAS to run all the preceding lines of the step and are among those rare, global statements that are
not part of a DATA or PROC step. In the program above, SAS knows that the DATA step has
ended when it reaches the PROC statement. The PROC step ends with a RUN statement, which
coincides with the end of the program.

1
If you use SAS long enough, you may run into an exception. Steps can also terminate with a QUIT, STOP, or ABORT

 statement.

Chapter 1: Getting Started Using SAS Software 7

While a typical program starts with a DATA step to input or modify data and then passes the data
to a PROC step, that is certainly not the only pattern for mixing DATA and PROC steps. Just as you
can stack building blocks in any order, you can arrange DATA and PROC steps in any order. A
program could even contain only DATA steps or only PROC steps.

To review, the table below outlines the basic differences between DATA and PROC steps:

DATA steps PROC steps

begin with DATA statements begin with PROC statements

read and modify data perform specific analysis or function

create a SAS data set produce results or report

As you read this table, keep in mind that it is a simplification. Because SAS is so flexible, the
differences between DATA and PROC steps are, in reality, more blurry. The table above is not
meant to imply that PROC steps never create SAS data sets (many do), or that DATA steps never
produce reports (they can). Nonetheless, you will find it much easier to write SAS programs if you
understand the basic functions of DATA and PROC steps.

8 The Little SAS Book

1.4 The DATA Step’s Built-in Loop

DATA steps read and modify data, and they do it in a way that is flexible, giving you lots of
control over what happens to your data. However, DATA steps also have an underlying
structure, an implicit, built-in loop. You don’t tell SAS to execute this loop: SAS does it
automatically. Memorize this:

DATA steps execute line by line and observation by observation.

This basic concept is rarely stated explicitly. Consequently, new users often grow into old users
before they figure this out on their own.

The idea that DATA steps execute line by line is fairly straightforward and easy to understand. It
means that, by default, SAS executes line one of your DATA step before it executes line two, and
line two before line three, and so on. That seems common sense, and yet new users frequently
run into problems because they try to use a variable before they create it. If a variable named Z is
the product of X and Y, then you better make sure that the statements creating X and Y come
before the statements creating Z.

What is not so obvious is that while DATA steps execute line by line, they also execute
observation by observation. That means SAS takes the first observation and runs it all the way
through the DATA step (line by line, of course) before looping back to pick up the second
observation. In this way, SAS sees only one observation at a time.

Imagine a SAS program running in slow motion: SAS reads observation number one from your
input data set. Then SAS executes your DATA step using that observation. If SAS reaches the
end of the DATA step without encountering any serious errors, then SAS writes the current
observation to a new, output data set and returns to the beginning of the DATA step to process
the next observation. After the last observation has been written to the output data set, SAS
terminates the DATA step and moves on to the next step, if there is one. End of slow motion;
please return to normal megahertz.

This diagram illustrates how an observation flows through a DATA step:

DATA step

line 1

line 2

line 3

line 4

line 5

output data set

observation 1

observation 2

observation 3

input data set

observation 1

observation 2

observation 3

Chapter 1: Getting Started Using SAS Software 9

SAS reads observation number one and processes it using line one of the DATA step, then line
two, and so on until SAS reaches the end of the DATA step. Then SAS writes the observation in
the output data set. This diagram shows the first execution of the line-by-line loop. Once SAS
finishes with the first observation, it loops back to the top of the DATA step and picks up
observation two. When SAS reaches the last observation, it automatically stops.

1

Here is an analogy. DATA step processing is a bit like voting. When you arrive at your polling
place, you stand in line behind other people who have come to vote. When you reach the front of
the line you are asked standard questions: “What is your name? Where do you live?” Then you
sign your name, and you cast your vote. In this analogy, the people are observations, and the
voting process is the DATA step. People vote one at a time (or observation by observation). Each
voter’s choices are secret, and peeking at your neighbor’s ballot is definitely frowned upon. In
addition, each person completes each step of the process in the same order (line by line). You
cannot cast your vote before you give your name and address. Everything must be done in the
proper order.

1
 If this seems a bit too structured, don’t worry. You can override the line-by-line and observation-by-observation structure in a

 number of ways. For example, you can use the RETAIN statement, discussed in section 3.9, to make data from the previous
 observation available to the current observation. You can also use the OUTPUT statement, discussed in sections 6.11 and 6.12,
 to control when observations are written to the output data set.

10 The Little SAS Book

1.5 Choosing a Mode for Submitting SAS Programs

So far we have talked about writing SAS programs, but simply writing a program does not give
you any results. Just like writing a letter to your representative in Congress does no good unless
you mail it, a SAS program does nothing until you submit or execute it. You can execute a SAS
program several ways, but not all methods are available for all operating environments. Check in
the SAS Help and Documentation for your operating environment or with your SAS Support
Consultant to find out which methods are available to you. The method you choose for executing
a SAS program will depend on your preferences and on what is most appropriate for your
application and your environment. If you are using SAS at a large site with many users, then ask
around and find out which is the most accepted method of executing SAS. If you are using SAS
on your own personal computer, then choose the method that suits you.

 SAS windowing environment If you type SAS at

your system prompt, or click on the SAS icon, you will most
likely get into the SAS windowing environment. In this
interactive environment, you can write and edit SAS
programs, submit programs for processing, and view and
print your results. In addition, there are many SAS windows
for performing different tasks such as managing SAS files,
customizing the interface, accessing SAS Help, and importing
or exporting data. Exactly what your windowing

environment looks like depends on the type of computer or terminal you are using, the
operating environment on the computer, and what options are in effect when you start up SAS.
If you are using a personal computer, then the SAS windowing environment will look similar to
other programs on your computer, and many of the features will be familiar to you.

SAS Enterprise Guide If you have SAS Enterprise Guide
software,

1
which runs only under Windows, you may choose to

submit your programs from within SAS Enterprise Guide. To
do this, use the Insert menu to open a Code window where
you can either enter your SAS program or open an existing
SAS program. Then you can choose to run your code on the
local machine, or on a remote server where SAS is installed. To
run your SAS program on a remote server, you must have SAS
Integration Technologies software installed. Also, SAS

Enterprise Guide can write SAS code for you through its extensive menu system.

Noninteractive mode Noninteractive mode is where your SAS
program statements are in a file on your system, and you start up SAS
specifying that you want to execute that file. SAS immediately starts to
process your file and ties up your computer, or window, until it is
finished. The results are usually placed in a file or files, and you are
returned to your system prompt.

Noninteractive mode is useful in many situations. This mode is good if
you want your program to execute immediately, but you do not want

1
 Beginning with SAS 9, SAS Enterprise Guide software is included with Base SAS software, but is installed separately. SAS

Enterprise Guide software is also available with SAS Version 8, but is licensed separately.

Chapter 1: Getting Started Using SAS Software 11

to or cannot use a windowing environment. Noninteractive mode is usually started by typing
SAS at your system prompt (shown here as $), followed by the filename containing your
program statements:

 $ SAS MyFile.sas

Batch or background mode With batch or background mode, your

SAS program is in a file. You submit the file for processing with SAS.
Your SAS program may start executing immediately, or it could be put in
a queue behind other jobs. Batch processing is used a lot on mainframe
computers, which are capable of executing many processes at one time.
You can continue to work on your computer while your job is being
processed, or better yet, you can go to the baseball game and let the
computer work in your absence. Batch processing is usually less
expensive than other methods and is especially good for large jobs which
can be set up to execute at off hours when the rates are at their lowest. When your job is complete,
the results will be placed in a file or files, which you can display or print at any time.

Batch processing may not be available for your operating environment. Check the SAS Help and
Documentation for your operating environment to see if it is available, then check with your SAS
Support Consultant to find out how to submit SAS programs for batch processing. Even sites with
the same operating environment may have different ways of submitting jobs in batch mode.

Remote submit If you have SAS/CONNECT
software, it is possible to write and develop your
SAS programs on one system, then submit them
for processing on another. Using this method,
you write your program on your local machine,
establish a connection to the remote machine,
and run the program on the remote machine.
Then the results are delivered back to your local
machine. You might want to do this if your
remote machine is much more powerful than your local machine, and you are running very large
programs. Also, you might need to access large or shared data files on the remote machine. Check
with your SAS Support Consultant to find out if this is an option at your
site.

Interactive line mode This mode is mentioned only because you
might see it in the SAS documentation, and you might get into it by
accident. In interactive line mode, you are prompted for SAS statements
one line at a time. There is no easy way to correct mistakes once you
have entered them, so unless you are an excellent typist, and an excellent
programmer, interactive line mode is exceedingly frustrating.

If you do find yourself in this mode (you will know when you get a 1? as
a prompt), you can get out by typing ENDSAS; and pressing ENTER. For example

1? ENDSAS;

Seek assistance from your SAS Support Consultant to find out why you got into line mode and
how to avoid it in the future.

12 The Little SAS Book

Results
(under the
Explorer
window)

1.6 Windows and Commands in the SAS Windowing Environment
It used to be that SAS looked pretty much the same on all platforms, and you couldn’t change its
appearance. But now SAS adopts the look and feel of your operating environment, and there are
many ways in which you can customize your SAS environment. This is good for you because
many aspects of the SAS windowing environment will be familiar, and if you don’t like the
default view, you can change it. It makes writing about it more difficult, because we can’t tell
you exactly what your SAS session will look like and how it will behave. However, there are
many common elements between the various operating environments, and you will probably
already be familiar with those elements which are different.

The SAS Windows
There are five basic SAS windows: the Results and Explorer windows, and three programming
windows: Editor, Log, and Output. It is possible to bring up SAS without all these windows, and
sometimes the windows are not immediately visible (for example, in the Windows operating
environment, the Output window comes up behind the Editor and Log windows), but all these
windows do exist in your SAS session. There are also many other SAS windows that you may
use for tasks such as getting help, changing SAS system options, and customizing your SAS
session. The following figure shows the default view for a Microsoft Windows SAS session, with
pointers to the five main SAS windows.

Editor This window is a text editor. You can use it to type in, edit, and submit SAS programs as
well as edit other text files such as raw data files. In Windows operating environments, the default
editor is the Enhanced Editor. The Enhanced Editor is syntax sensitive and color codes your
programs making it easier to read and find mistakes. The Enhanced Editor also allows you to
collapse and expand the various steps in your program. For other operating environments, the
default editor is the Program Editor whose features vary with the version of SAS and operating
environment.

Explorer Log

Output (under the
Editor and Log
windows)

Editor

Chapter 1: Getting Started Using SAS Software 13

Log The Log window contains notes about your SAS session, and after you submit a SAS program,
any notes, errors, or warnings associated with your program as well as the program statements
themselves will appear in the Log window.

Output If your program generates any printable results, then they will appear in the Output window.

Results The Results window is like a table of contents for your Output window; the results
tree lists each part of your results in an outline form.

Explorer The Explorer window gives you easy access to your SAS files and libraries.

The SAS Commands
There are SAS commands for performing a variety of tasks. Some tasks are probably familiar, such
as opening and saving files, cutting and pasting text, and accessing Help. Other commands are
specific to the SAS System, such as submitting a SAS program, or starting up a SAS application.
You may have up to three ways to issue commands: menus, the toolbar, or the SAS command bar
(or command line). The following figure shows the location of these three methods of issuing SAS
commands in the Windows operating environment default view.

Menus Most operating environments will have pull-down menus located either at the top of
each window, or at the top of your screen. If your menus are at the top of your screen, then the
menus will change when you activate the different windows (usually by clicking on them). You
may also have, for each window, context-sensitive pop-up menus that appear when you press the
right or center button of your mouse.

Toolbar The toolbar, if you have one, gives you quick access to commands that are already
accessible through the pull-down menus. Not all operating environments have a toolbar.

SAS command bar The command bar is a place that you can type in SAS commands. In some
operating environments the command bar is located with the toolbar (as shown here); in other
operating environments you may have a command line with each of the SAS windows (usually
indicated by Command=>). Most of the commands that you can type in the command bar are also
accessible through the pull-down menus or the toolbar.

Controlling your windows The Window pull-down menu gives you choices on how the
windows are placed on your screen. You can also activate any of the programming windows by
selecting it from the Window pull-down menu, typing the name of the window in the command
line area of your SAS session, or simply clicking on the window.

SAS Command Bar

Pull-down Menus

Toolbar

14 The Little SAS Book

1.7 Submitting a Program in the SAS Windowing Environment
Naturally after going to the trouble of writing SAS programs, you want to see some results. As
we have already discussed, there are several ways of submitting SAS programs. If you use the
SAS windowing environment, then you can edit and submit programs, and see results all within
the windowing environment.

Getting your program into the editor The first thing you need to do is get your

program into the Editor window. You can either type your program into the editor, or you can
bring the program into the Editor window from a file. The commands for editing in the editor
and for opening files should be familiar. SAS tries to follow conventions that are common for
your operating environment. For example, to open a file in the editor, you can select Open from
the File pull-down menu. For some operating environments you may have an Open icon on the
toolbar, and you may also have the option of pasting your file into the editor from the clipboard.

Submitting your program Once your program appears in the editor, you execute it using
the SUBMIT command. Depending on your operating environment, you have a few choices on
how to execute the SUBMIT command.

 Use the Submit icon on the toolbar.

Make the Editor window active and enter SUBMIT in the
command line area of your SAS session.

Make the Editor window active and select Submit
from the Run pull-down menu.

The figure to the right shows a
program in the Enhanced Editor in the
Windows operating environment
ready to be submitted using the
Submit icon on the toolbar.

Chapter 1: Getting Started Using SAS Software 15

Viewing the SAS Log and Output If you are using the Enhanced Editor (Windows
operating environment), after you submit your program, the program remains in the Enhanced
Editor window and the results of your program go into the Log and Output windows. If you are
using the Program Editor (all other operating environments) then your results also go into the
Log and Output windows, but your program disappears from the Program Editor window. At
first it may be a shock for you to see your program disappear in front of your eyes. Don’t worry;
the program you spent so long writing is not gone forever. If your program produced any
output, then you will also get new entries in the Results window. The Results window is like a
table of contents for your SAS output and is discussed in more detail in section 1.9. This figure is
an example of what your screen might look like after you submit a program from the Enhanced
Editor.

You may not see all three of the
programming windows (Editor,
Log, and Output) at the same
time. In some operating
environments, the windows are
placed one on top of the other.
You can bring a window to the
top by clicking on it, typing its
name in the command line area, or
selecting it from the Window
menu.

Getting your program back
Unfortunately for most of us, our
programs do not run perfectly every time. If you have an error in your program, you will most
likely want to edit the program and run it again. If you are using the Program Editor window, you
will need to get your program back in the Program Editor window using the RECALL command.

You have two choices for executing the RECALL command.

Make the Program Editor the active window, then enter
RECALL in the command line area of your SAS session.

Make the Program Editor the active window, then select
Recall Last Submit from the Run pull-down menu.

The RECALL command will bring back the last block of
statements you submitted. If you use the RECALL
command again, it will insert the block of statements
submitted before the last one, and so on and so on, until it
retrieves all the statements you submitted.

16 The Little SAS Book

1.8 Reading the SAS Log

Every time you run a SAS job, SAS writes messages in your log. Many SAS programmers
ignore the SAS log and go straight to the output. That’s understandable, but dangerous. It is

possible�and sooner or later it happens to all of us�to get bogus results that look fine in the
output. The only way to know they are bad is to check the SAS log. Just because it runs doesn’t
mean it’s right.

Where to find the SAS log The location of the SAS log varies depending on the operating
environment you use, the mode you use (SAS windowing environment, noninteractive, or
batch), and local settings. If you submit a program in the windowing environment, you will, by
default, see the SAS log in your Log window as in the following figure.

If you submit your program in batch
or noninteractive mode, the log will
be written to a file that you can view
or print using your operating envi-
ronment’s commands for viewing
and printing. The name given to the
log file is generally some
permutation of the name you gave
the original program. For example, if
you named your SAS program
Marathon.sas, then it is a good bet
that your log file will be
Marathon.log. At some installations
the log and output files are written
to a single file, so don’t be surprised
if you find them together.

What the log contains People tend to think of the SAS log as either a rehash of their
program or as just a lot of gibberish. OK, we admit, there is some technical trivia in the SAS log,
but there is also plenty of important information. Here is a simple program that converts miles to
kilometers and prints the result:

* Create a SAS data set named distance;
* Convert miles to kilometers;
DATA distance;
 Miles = 26.22;
 Kilometers = 1.61 * Miles;
* Print the results;
PROC PRINT DATA = distance;
RUN;

Chapter 1: Getting Started Using SAS Software 17

If you run this program, SAS will produce a log similar to this:

� NOTE: Copyright (c) 2003 by SAS Institute Inc., Cary, NC, USA.
 NOTE: SAS (r) Proprietary Software Version 9.00 (TS M0)
 Licensed to XYZ Inc., Site 0098541001.
 NOTE: This session is executing on the XP_PRO platform.

 NOTE: SAS initialization used:
 real time 1.40 seconds
 cpu time 0.96 seconds

� 1 * Create a SAS data set named distance;
 2 * Convert miles to kilometers;
 3 DATA distance;
 4 Miles = 26.22;
 5 Kilometers = 1.61 * Miles;
 6 * Print the results;

� NOTE: The data set WORK.DISTANCE has 1 observations and 2 variables.
� NOTE: DATA statement used (Total process time):
 real time 0.03 seconds
 cpu time 0.03 seconds

� 7 PROC PRINT DATA = distance;
 8 RUN;

 NOTE: There were 1 observations read from the data set WORK.DISTANCE
� NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

The SAS log above is a blow-by-blow account of how SAS executes the program.

� It starts with notes about the version of SAS and your SAS site number.

� It contains the original program statements with line numbers added on the left.

� The DATA step is followed by a note containing the name of the SAS data set created
(WORK.DISTANCE), and the number of observations (1) and variables (2). A quick glance
is enough to assure you that you did not lose any observations or accidentally create a lot
of unwanted variables.

� Both DATA and PROC steps produce a note about the computer resources used. At first
you probably won’t care in the least. But if you run on a multi-user system or have long
jobs with large data sets, these statistics may start to pique your interest. If you ever find
yourself wondering why your job takes so long to run, a glance at the SAS log will tell you
which steps are the culprits.

If there were error messages, they would appear in the log, indicating where SAS got confused and
what action it took. You may also find warnings and other types of notes which sometimes indicate
errors and other times just provide useful information.

18 The Little SAS Book

1.9 Viewing Your Results in the Output Window

How you view or print your output depends on how you submit your program. If you submit your
program in the SAS windowing environment, then your output will, by default, go to the Output
window. If you choose another way to submit your program, either batch or non-interactive, then
your output will probably be in a file on your computer. Use your operating environment’s
commands to view and print the output file (also called the listing). For example, if you execute
your SAS program in non-interactive mode on a UNIX system, then your output will be in a file
with an extension .lst. To view the file, you can use either the cat or more commands, and to print
the file you would use your system’s command for printing files (usually you would type either lp
or lpr).

The Output window After submitting your program in the SAS windowing environment,
your results will go to the Output window. If you have the SAS Explorer option turned on (some
operating environments have this turned on by default, while others do not), then you will also
see a listing of the different parts of your output in your Results window. The following figure
shows what your Output window might look like after submitting a simple program under
Windows.

Printing or saving the
contents of the Output
window If you want to print
or save the entire contents of the
Output window, first make the
Output window active by
clicking in it, then select either
Print or Save As from the File
pull-down menu. If you are not
using a personal computer, then
your environment may not be set
up for printing from within SAS.
If you cannot print from within
SAS, then save the output to a
file and use your system’s
command for printing files.

The Results window
When you have a lot of output, the Results window can be very helpful. The Results window is
like a table of contents for your output. It lists each procedure that produces output, and if you
open, or expand, the procedure in the Results tree, you can see each part of the procedure
output. The following figure shows what your screen might look like if you ran the ANOVA
(Analysis of Variance) procedure.

Chapter 1: Getting Started Using SAS Software 19

There is one entry in the Results
window for the ANOVA proce-
dure. Notice that in the Output
window, you see the end of the
procedure’s output. If you
expand the ANOVA procedure
in the results tree, by clicking on
the plus (+) signs, then you will
see all the different parts of the
ANOVA output. Double click on
the output you want to see, and
it will appear at the top of the
Output window. The following
figure shows what your Output
window would look like after
you double click on the Overall
ANOVA item in the Results
window.

Printing or saving parts
of the output Using the
Results window, it is possible
to print or save just the parts of
the output you want. First
highlight the item you want in
the Results window, then bring
up the context-sensitive menu.
In the Windows operating
environment you do this with
the right mouse button; in
other operating environments,
it may be the middle or right
mouse button. Then select
either Print or Save As from
the pop-up menu. You may
also be able to print or save
from the File pull-down menu
once you highlight the output part you want. If your SAS environment is not set up for printing
from within SAS, then save your results to a file and use your operating environment’s command
for printing files.

20 The Little SAS Book

1.10 Creating HTML Output

If you are using the SAS windowing environment, then you can create output in Hypertext
Markup Language (HTML) format with just a few clicks of your mouse.

1

The Preferences window To turn on HTML output (in Windows, UNIX, or OpenVMS
2
),

select Options-Preferences from the Tools menu. This opens the Preferences window. Click on
the Results tab to bring it to the front. Here is what the Results portion of the Preferences window
looks like in Windows:

When you first open this window, you will see a check next to Create Listing. Listing is the
default type of output, and it is what you see in the Output window if you are using the SAS
windowing environment, or in the output or listing file if you are running in batch mode. You can
turn on HTML output by clicking in the box next to Create HTML. To turn off the listing or HTML
output, just click to un-check it.

In the Preferences window, you can also select a style for HTML output by clicking on the arrow
next to the Style box and scrolling through the list of styles provided with SAS. When you are done
with the Preferences window, click on the OK button.

The Results Viewer and Results windows Once you have turned on HTML output,

then every time you run a program, your output will automatically appear in the Results Viewer
window. The following figure shows what you see after running two simple procedures: MEANS
and PRINT. Two windows are showing: the Results Viewer window displaying the HTML output,
and the Results window listing all the pieces of output in tree form.

1
 If you are not using the SAS windowing environment, you can still produce HTML output by using ODS statements (see

chapter 5). In addition, SAS Enterprise Guide allows you to create HTML output in a way that is similar to the one shown in
this section with the added bonus that you can also produce RTF and PDF output.
2
 If you are using OS/390 or z/OS, you will need to modify your registry settings in order to generate HTML interactively.

Contact your site’s SAS Support Consultant for more information.

Chapter 1: Getting Started Using SAS Software 21

The Results Viewer window only shows you one piece of output at a time, but you can tell that
SAS ran both procedures by looking at the list in the Results window. You can expand the list by
clicking on plus (+) signs, or collapse it by clicking on minus (-) signs. Since both the listing and
HTML output were turned on, each procedure produced two pieces of output: one for listing, and
one for HTML. You can display any piece of output by double clicking its name in the Results
window.

To save a piece of output in a file, make the Results Viewer window active by clicking on it, then
click on the File menu, and choose Save As…. To print a piece of output, select Print from the
File menu.

The preceding screen used the DEFAULT style which is the default for HTML output. To see the
same output with a different style, just choose a different style in the Preferences window, and re-
run your program. Here is the output from the same program using the D3D style.

Results
window

Results Viewer
window

22 The Little SAS Book

1.11 SAS Data Libraries

Before you can use a SAS data set, you have to tell SAS where to find it. You do that by setting up a
SAS library. A SAS library is simply a location where SAS data sets (as well as other types of SAS
files) are stored. Depending on your operating environment, a SAS library might be a folder or
directory on your computer, or it might be a physical location like a hard drive, floppy disk, or CD.
To set up a library, all you have to do is make up a name for your library and tell SAS where it is.
There are several ways to do this including using the LIBNAME statement (covered in sections 2.19
to 2.20) and using the New Library window in the SAS Windowing Environment.

When you start the
SAS windowing
environment, you
see the basic SAS
windows including
the SAS Explorer
window on the left.
(If the Explorer
window is under the
Results window,
click on its tab to
bring it forward.) If
you double-click on
the Libraries icon,
Explorer will open
the Active Libraries
window showing all
the libraries that are
currently defined. To
go back to the previous window within Explorer, choose Up one level from the View menu,
or click in the Explorer window to make it active and then click on the Up One Level button

 on the toolbar.

The Active Libraries window When you open the Active Libraries window, you will see at

least three libraries: Sashelp, Sasuser, and Work. You may have other
libraries for specific SAS products (such as the Maps library for
SAS/GRAPH software), or libraries that have been set up by you or
someone you work with. The Sashelp library contains information that
controls your SAS session along with sample SAS data sets. The Work
library is a temporary storage location for SAS data sets. It is also the
default library. If you create a SAS data set without specifying a
library, SAS will put it in the Work library, and then delete it when
you end your session. If you make changes to the default settings for
the SAS windowing environment, this information will be stored in
the Sasuser library. You can also store SAS data sets, SAS programs,
and other SAS files in the Sasuser library. However, many people
prefer to create a new library for their SAS files.

Chapter 1: Getting Started Using SAS Software 23

Creating a new library You can create new SAS libraries
using the New Library window. To open this window, either
left click in the Active Libraries window (to make it active) and
choose New from the File menu, or right click in the Active
Libraries window and choose New from the pop-up menu.

In the New Library window,
type the name of the library
you want to create. This name
is called a libref which is short
for library reference. A libref
must be eight characters or
fewer; start with a letter or
underscore; and contain only
letters, numerals, or
underscores. In this window,
the name Mylib has been
typed in as the libref. In the
Path field, enter the complete
path to the folder or directory
where you want your data

sets to be stored, or choose the Browse… button to navigate to the location. If you don’t want to
define your library reference every time you start up SAS, then check the Enable at startup box.
Click OK and then your new library reference will appear in the Active Libraries window.

Here is the Active Libraries window showing the newly created
Mylib library.

24 The Little SAS Book

1.12 Viewing Data Sets with SAS Explorer

In addition to listing your current libraries and creating new libraries, you can also use SAS
Explorer to open SAS data sets for viewing and editing, or to list information about their
contents such as the date the data set was created and the names of variables.

Start by double-clicking on the Libraries icon in the Explorer
window as shown in section 1.11. This will open the Active Libraries
window showing all the libraries that are currently defined on your
system. If you double-click on a library, SAS will open a Contents
window showing you all the files (including SAS data sets) and
folders in that particular library.

To go back to the previous window within Explorer, choose Up one
level from the View menu, or click in the Explorer window to

make it active and then click on the Up One Level button on the
toolbar.

The Contents window This window shows the contents of a
library. SAS data sets are represented by an icon showing a little
table of data and a red ball, so the library shown on the right
contains three data sets named Customers, Models, and Orders. If
you double-click on a data set, SAS will open a Viewtable window
showing that data set. (If you don’t yet have any SAS data sets of
your own, you can view sample data sets that are provided with
SAS in the Sashelp library. The Class data set in the Sashelp library
is a good one to view.)

The Viewtable
window This window
(discussed in more detail in
section 2.2) allows you to
create, browse, and edit
data sets. This picture
shows the data set named
Models from the Mylib
library.

Chapter 1: Getting Started Using SAS Software 25

Listing the properties of a SAS data set In
addition to viewing the data in a SAS data set, you can
use the SAS Explorer window to list information about a
data set. To list the properties of a particular SAS data set,
right-click on its icon, and select Properties from the
pop-up menu.

SAS will open a Properties window for that data
set

1
. This window displays information about

the data set such as the date it was created and
the number of rows (or observations).

If you choose Columns, SAS displays
information about the columns (or variables) in
that data set. The information shown in the
Properties window is similar to the information
produced by the CONTENTS procedure
described in section 2.22.

1 The Properties windows shown here are from SAS 9 in the Windows operating environment. If you are using a different
version of SAS, or if you are using a different operating environment, your windows may have a different look.

26 The Little SAS Book

 1.13 Using SAS System Options

System options are parameters you can change that affect SAS�how it works, what the output
looks like, how much memory is used, error handling, and a host of other things. SAS makes
many assumptions about how you want it to work. This is good. You do not want to specify
every little detail each time you use SAS. However, you may not always like the assumptions
SAS makes. System options give you a way to change some of these assumptions.

Not all options are available for all operating environments. A list of options specific to your
operating environment appears in the SAS Help and Documentation. You can see a list of system
options and their current values by opening the SAS System Options window or by using the
OPTIONS procedure. To use the OPTIONS procedure, submit the following SAS program and
view the results in the SAS log:

PROC OPTIONS;
RUN;

There are four ways to specify system options. Some options can be specified using only some of
these methods. The SAS Help and Documentation for your operating environment tells you
which methods are valid for each system option:

1. Your system administrator (this could be you if you are using a PC) can create a SAS
configuration file which contains settings for the system options. This file is accessed by
SAS every time SAS is started.

2. Specify system options at the time you start up SAS from your system’s prompt (called
the invocation).

3. Change selected options in the SAS System Options window if you are using the SAS
windowing environment.

4. Use the OPTIONS statement as a part of your SAS program.

The methods are listed here in order of increasing precedence; method 2 will override method 1,
method 3 will override method 2, and so forth. If you are using the SAS windowing environ-
ment, methods 3 and 4, the SAS System Options window and OPTIONS statement, will override

each other�so whichever was used last will be in effect. Only the last two methods are covered
here. The first two methods are very system dependent; to find out more about these methods
see the SAS Help and Documentation for your operating environment.

OPTIONS statement The OPTIONS statement is part of a SAS program and affects all steps
that follow it. It starts with the keyword OPTIONS and follows with a list of options and their
values. For example

OPTIONS LINESIZE = 80 NODATE;

The OPTIONS statement is one of the special SAS statements which do not belong to either a PROC
or a DATA step. This global statement can appear anywhere in your SAS program, but it usually
makes the most sense to let it be the first line in your program. This way you can easily see which
options are in effect. If the OPTIONS statement is in a DATA or PROC step, then it affects that step
and the following steps. Any subsequent OPTIONS statements in a program override previous ones.

Chapter 1: Getting Started Using SAS Software 27

The SAS System Options window
You can view and change SAS system
options through the SAS System Options
window. Open it either by typing
OPTIONS in the command line area on
your screen, or by selecting it from the
Tools pull-down menu. To change the
value of an option, first locate the option by
clicking on the appropriate category on the
left side of the screen. A list of options and
their current values will appear on the right
side of the screen. Right click on the option
itself to modify the value or set it to the
default.

Common options The following are some common system options you might want to use:

CENTER | NOCENTER Controls whether output are centered or left-justified.
 Default: CENTER.

DATE | NODATE Controls whether or not today’s date will appear at the
 top of each page of output. Default: DATE.

LINESIZE = n Controls the maximum length of output lines.
 Possible values for n are 64 to 256. Default varies.

NUMBER | NONUMBER Controls whether or not page numbers appear on each
 page of SAS output. Default: NUMBER.

ORIENTATION = PORTRAIT Specifies the orientation for printing output.
ORIENTATION = LANDSCAPE Default: PORTRAIT

PAGENO = n Starts numbering output pages with n. Default is 1.

PAGESIZE = n Controls the maximum number of lines per page of output.
 Possible values for n are 15 to 32767. Default varies.

RIGHTMARGIN = n Specifies size of margin (such as 0.75in or 2cm) to be used for
LEFTMARGIN = n printing output. Default: 0.00in.
TOPMARGIN = n
BOTTOMMARGIN = n

YEARCUTOFF = yyyy Specifies the first year in a hundred-year span for interpreting
 two-digit dates. Default: 1920.

2

From Bartlett’s Familiar Quotations 13th edition, by John Bartlett, copyright 1955 by Little Brown &
Company. Public domain.
From the SAS L Listserv, March 15, 1994. Reprinted by permission of the author.

‘‘ ’’
Practice is the best of all

instructors.

PUBLIUS SYRUS, CIRCA 42 B.C

‘‘ ’’
We all learned by doing, by

experimenting (and often failing),
and by asking questions.

JAY JACOB WIND

CHAPTER 2

Getting Your Data into SAS�

2.1 Methods for Getting Your Data into SAS 30

2.2 Entering Data with the Viewtable Window 32

2.3 Reading Files with the Import Wizard 34

2.4 Telling SAS Where to Find Your Raw Data 36

2.5 Reading Raw Data Separated by Spaces 38

2.6 Reading Raw Data Arranged in Columns 40

2.7 Reading Raw Data Not in Standard Format 42

2.8 Selected Informats 44

2.9 Mixing Input Styles 46

2.10 Reading Messy Raw Data 48

2.11 Reading Multiple Lines of Raw Data per Observation 50

2.12 Reading Multiple Observations per Line of Raw Data 52

2.13 Reading Part of a Raw Data File 54

2.14 Controlling Input with Options in the INFILE Statement 56

2.15 Reading Delimited Files with the DATA Step 58

2.16 Reading Delimited Files with the IMPORT Procedure 60

2.17 Reading PC Files with the IMPORT Procedure 62

2.18 Reading PC Files with DDE 64

2.19 Temporary versus Permanent SAS Data Sets 66

2.20 Using Permanent SAS Data Sets with LIBNAME Statements 68

2.21 Using Permanent SAS Data Sets by Direct Referencing 70

2.22 Listing the Contents of a SAS Data Set 72

30 The Little SAS Book

2.1 Methods for Getting Your Data into SAS

Data come in many different forms. Your data may be handwritten on a piece
of paper, or typed into a raw data file on your computer. Perhaps your data are
in a database file on your personal computer, or in a database management
system (DBMS) on the mainframe computer at your office. Wherever your data
reside, there is a way for SAS to use them. You may need to convert your data
from one form to another, or SAS may be able to use your data in their current

form. This section outlines several methods for getting your data into SAS. Most of these methods
are covered in this book, but a few of the more advanced methods are merely mentioned so that
you know they exist. We do not attempt to cover all methods available for getting your data into
SAS, as new methods are continually being developed, and creative SAS users can always come up
with clever methods that work for their own situations. But there should be at least one method
explained in this book that will work for you.

Methods for getting your data into SAS can be put into four general categories:

�� entering data directly into SAS data sets

�� creating SAS data sets from raw data files

�� converting other software’s data files into SAS data sets

�� reading other software’s data files directly.

Naturally, the method you choose will depend on where your data are located, and what software
tools are available to you.

Entering data directly into SAS data sets Sometimes the best method for getting your

data into SAS is to enter the data directly into SAS data sets through your keyboard.

�� The Viewtable window, discussed in section 2.2, is included with Base SAS software.
Viewtable allows you to enter your data in a tabular format. You can define variables,
or columns, and give them attributes such as name, length, and type (character or
numeric).

�� SAS Enterprise Guide software, a Windows only application, has a data entry window
that is very similar to the Viewtable window. As with Viewtable, you can define
variables and give them attributes.

�� SAS/FSP software, short for Full Screen Product, allows you to design custom data
entry screens. It also has the capability for detecting data entry errors as they happen.
The SAS/FSP product is licensed separately from Base SAS software.

Creating SAS data sets from raw data files Much of this chapter is devoted to reading
raw data files (also referred to as text, ASCII, sequential, or flat files). You can always read a raw
data file since the DATA step is an integral part of Base SAS software. And, if your data are not
already in a raw data file, chances are you can convert your data into a raw data file. There are two
general methods for reading raw data files:

�� The DATA step is so versatile that it can read almost any type of raw data file. This
method is covered in this chapter starting with section 2.4.

Chapter 2: Getting Your Data into SAS 31

�� The Import Wizard, covered in section 2.3 and its cousin the IMPORT procedure,
covered in section 2.16, are available for UNIX, OpenVMS, and Windows operating
environments. These are simple methods for reading particular types of raw data files
including comma-separated values (CSV) files, and other delimited files.

Converting other software’s data files into SAS data sets Each software application
has its own form for data files. While this is useful for software developers, it is troublesome for
software users—especially when your data are in one application, but you need to analyze them
with another. There are several options for converting data from applications into SAS
data sets:

�� The IMPORT procedure and the Import Wizard can be used to convert Microsoft Excel,
Lotus, dBase, and Microsoft Access files into SAS data sets if you have SAS/ACCESS for
PC File Formats software installed on your computer. This is covered in sections 2.3 and
2.17.

�� If you don’t have SAS/ACCESS software, then you can always create a raw data file from
your application and read the raw data file with either the DATA step or the IMPORT
procedure. Many applications can create CSV files, which are easily read using the Import
Wizard or IMPORTprocedure (covered in sections 2.3 and 2.16) or the DATA step
(covered in section 2.15).

�� Dynamic Data Exchange (DDE), covered in section 2.18, is available only for those
working in the Windows operating environment. To use DDE, you must have the other
Windows application (Microsoft Excel for example) running on your computer at the
same time as SAS. Then using DDE and the DATA step, you can convert data into SAS
data sets.

Reading other software’s data files directly Under certain circumstances you may be
able to read data without converting to a SAS data set. This method is particularly useful when
you have many people updating data files, and you want to make sure that you are using the most
current data.

�� The SAS/ACCESS products allow you to read data without converting your data into SAS
data sets. There are SAS/ACCESS products for most of the popular database management
systems including ORACLE, DB2, INGRES, and SYBASE. This method of data access is
not covered in this book.

�� We already mentioned using SAS/ACCESS for PC Files Formats software to convert
several PC file types to SAS data sets, but you can also use the Excel and Access engines to
read these types of files directly without converting. See the SAS Help and
Documentation for more information on these engines.

�� There are also data engines that allow you to read data directly but are part of Base SAS
software. The SPSS engine is covered in Appendix D. There are also engines for OSIRIS,
old versions of SAS data sets, and SAS data sets in transport format. Check the SAS Help
and Documentation for your operating environment for a complete list of available
engines.

Given all these methods for getting your data into SAS, you are sure to find at least one method
that will work for you—probably more.

32 The Little SAS Book

2.2 Entering Data with the Viewtable Window

The Viewtable window which is part of Base SAS software
1
 is an easy way to create new data

sets, or browse and edit existing data sets. True to its name, the Viewtable window displays
tables (another name for data sets) in a tabular format. To open the Viewtable window, select
Table Editor from the Tools menu. An empty Viewtable window will appear.

This table contains no data. Instead you see rows (or observations) labeled with numbers and
columns (or variables) labeled with letters. You can start typing data into this default table, and
SAS will automatically figure out if your columns are numeric or character. However, it’s a good
idea to tell SAS about your data so each column is set up the way you want. You do this with the
Column Attributes window.

Column Attributes window The letters at the tops of columns are default variable names.
By right-clicking on a letter, you can choose to open a Column Attributes window for that column.
This window contains default values which you can replace with the values you desire. When you
are satisfied with the values, click on Apply. To switch to a new column, click on that column in
the Viewtable window. When you are finished changing column attributes click on Close.

1 If you are using a non-graphical monitor, then SAS uses FSVIEW to display your tables, so you also need SAS/FSP software
which is licensed separately.

Chapter 2: Getting Your Data into SAS 33

Entering data Once you have
defined your columns you are
ready to type in your data. To
move the cursor, click on a field,
or use tab and arrow keys. Here is
a table with column attributes
defined and data entered.

Saving your table To save a
table, select Save As… from the
File menu. Select a library, and
then specify the member name of
your table. The libraries displayed
correspond to locations (such as
directories) on your computer. If you want to save your table in a different location, you can add
another library by clicking on the New Library icon. Type in a name for the new library and its
path. Then click on OK. Specify the member name by typing it in the Member Name field.

Opening an existing
table To browse or edit an
existing table, first select
Table Editor from the
Tools menu to open the
Viewtable window. Then
select Open from the File
menu. Click on the library
you want and then on the
table name. If the table you
want to open is not in any of
the existing libraries, click on

the New Library icon. Type in a name for the new library and its path. Then click on OK. To
switch from browse mode (the default) to edit mode, select Edit Mode from the Edit menu. You
can also open an existing table by navigating to it in the SAS Explorer window, and double clicking
on it.

Other features The Viewtable window has many other features including sorting, printing,
adding and deleting rows, and viewing multiple rows (the default, called Table View) or viewing
one row at a time (called Form View). You can control these features using either menus or icons.

Using your table in a SAS program Tables that you create in Viewtable can be used in
programs just as tables created in programs can be used in Viewtable. For example, if you saved
your table in the SASUSER library and named it COFFEE, you could print it with this program:

PROC PRINT DATA=Sasuser.coffee;
RUN;

34 The Little SAS Book

2.3 Reading Files with the Import Wizard

Using the Import Wizard
1
, you can read a variety of data file types into SAS by simply answering

a few questions. The Import Wizard will scan your file to determine variable types
2
 and will, by

default, use the first row of data for the variable names. The Import Wizard can read all types of
delimited files including comma-separated values (CSV) files which are a common file type for
moving data between applications. And, if you have SAS/ACCESS for PC File Formats
software, then you can also read a number of popular PC file types

3
.

Start the Import Wizard by
choosing Import Data… from
the File menu.

Select the type of file you are
importing by choosing from the
list of standard data sources
such as comma-separated
values (*.csv) files.

Now, specify the location of
the file that you want to
import. By default, SAS uses
the first row in the file as the
variable names for the SAS
data set, and starts reading
data in the second row. The
Options… button takes you
to another screen where you
can change this default action.

1 The Import Wizard is available in the Windows, UNIX, and OpenVMS operating environments.

2 By default the Import Wizard will scan the first 20 rows for delimited files and the first 8 rows for Microsoft Excel files. If you
have all missing data in these rows, then the Import Wizard (and the IMPORT procedure) may not read the file correctly. See
sections 2.16 and 2.17 for more information.

3 Under the Windows operating environment, you can read Microsoft Excel, Microsoft Access, Lotus, and dBase files (if you are
running Microsoft Windows 64-Bit Edition, then you cannot read Microsoft Access or Microsoft Excel 97, Excel 2000, or Excel
2002 files). Under the UNIX operating environment, you can read dBase files, and starting with SAS 9.1, UNIX users can also
read Microsoft Excel and Microsoft Access files.

Chapter 2: Getting Your Data into SAS 35

The next screen asks you to
choose the SAS library and
member name for the SAS
data set that will be created.
If you choose the WORK
library, then the SAS data
set will be deleted when
you exit SAS. If you choose
a different library, then the
SAS data set will remain
even after you exit SAS.
There is no way to define a
library from within the
Import Wizard, so make
sure your library is defined
before entering the Import

Wizard. You can define libraries using the New Library window discussed in section 1.11 (or
using a LIBNAME statement as discussed in section 2.20). After choosing a library, enter a member
name for the SAS data set.

In the last window, the
Import Wizard gives you
the option of saving the
PROC IMPORT statements
used for importing the file.

For some types of files, the
Import Wizard asks
additional questions. For example, if you are importing Microsoft Access files, then you will be
asked for the database name and the table you want to import. You will also be given an
opportunity to enter user ID and password information if applicable.

Using imported data in a SAS program Data that you import through the Import Wizard
can be used in any SAS program. For example, if you saved your data in the WORK library and
named it FLOWERS, you could print it with this program:

PROC PRINT DATA=WORK.flowers;
RUN;

Or, since WORK is the default library, you could also use:

PROC PRINT DATA=flowers;
RUN;

36 The Little SAS Book

2.4 Telling SAS Where to Find Your Raw Data

If your data are in raw data files (also referred to as text, ASCII, sequential, or flat files), using the
DATA step to read the data gives you the most flexibility. The first step toward reading raw data
files is telling SAS where to find the raw data. Your raw data may be either internal to your SAS
program, or in a separate file. Either way, you must tell SAS where to find your data.

A raw data file can be viewed using simple text editors or system commands. For PC users,
raw data files will either have no program associated with them, or they will be associated with
simple editors like Microsoft Notepad. In some operating environments, you can use commands
to list the file, such as the cat or more commands in UNIX. Spreadsheet files are examples of
data files that are not raw data. If you try using a text editor to look at a spreadsheet file, you will
probably see lots of funny special characters you can’t find on your keyboard. It may cause your
computer to beep and chirp, making you wish you had that private office down the hall. It looks
nothing like the nice neat rows and columns you see when you use your spreadsheet software to
view the same file.

Internal raw data If you type raw data directly in your SAS program, then the data
are internal to your program. You may want to do this when you have small amounts of data, or
when you are testing a program with a small test data set. Use the DATALINES statement to
indicate internal data. The DATALINES statement must be the last statement in the DATA step.
All lines in the SAS program following the DATALINES statement are considered data until SAS
encounters a semicolon. The semicolon can be on a line by itself or at the end of a SAS statement
which follows the data lines. Any statements following the data are part of a new step. If you are
old enough to remember punching computer cards, you might like to use the CARDS statement
instead. The CARDS statement and the DATALINES statement are synonymous. The following
SAS program illustrates the use of the DATALINES statement. (The DATA statement simply
tells SAS to create a SAS data set named USPRESIDENTS, and the INPUT statement tells SAS
how to read the data. The INPUT statement is discussed in sections 2.5 through 2.15.)

* Read internal data into SAS data set uspresidents;
DATA uspresidents;
 INPUT President $ Party $ Number;
 DATALINES;
Adams F 2
Lincoln R 16
Grant R 18
Kennedy D 35
 ;
RUN;

External raw data files Usually you will want to keep data in external files, separating the
data from the program. This eliminates the chance that data will accidentally be altered when
you are editing your SAS program. Use the INFILE statement to tell SAS the filename
and path, if appropriate, of the external file containing the data. The INFILE statement follows
the DATA statement and must precede the INPUT statement. After the INFILE keyword, the

Chapter 2: Getting Your Data into SAS 37

file path and name are enclosed in quotation marks. Examples from several operating
environments follow:

Windows: INFILE ’c:\MyDir\President.dat’;

UNIX: INFILE ’/home/mydir/president.dat’;

OpenVMS: INFILE ’[username.mydir]president.dat’;

OS/390 or z/OS: INFILE ’MYID.PRESIDEN.DAT’;

Suppose the following data are in a file called President.dat in the directory MyRawData on the
C drive (Windows):

Adams F 2
Lincoln R 16
Grant R 18
Kennedy D 35

The following program shows the use of the INFILE statement to read the external data file:

* Read data from external file into SAS data set;
DATA uspresidents;
 INFILE ’c:\MyRawData\President.dat’;
 INPUT President $ Party $ Number;
RUN;

The SAS log Whenever you read data from an external file, SAS gives some very valuable
information about the file in the SAS log. The following is an excerpt from the SAS log after
running the previous program. Always check this information after you read a file as it could
indicate problems. A simple comparison of the number of records read from the infile with the
number of observations in the SAS data set can tell you a lot about whether SAS is reading your
data correctly.

NOTE: The infile ’c:\MyRawData\President.dat’ is:
 File Name=c:\MyRawData\President.dat,
 RECFM=V,LRECL=256
NOTE: 4 records were read from the infile ’c:\MyRawData\President.dat’.
 The minimum record length was 13.
 The maximum record length was 13.
NOTE: The data set WORK.USPRESIDENTS has 4 observations and 3 variables.

Long records In some operating environments, SAS assumes external files have a record length
of 256 or less. (The record length is the number of characters, including spaces, in a data line.) If
your data lines are long, and it looks like SAS is not reading all your data, then use the LRECL=
option in the INFILE statement to specify a record length at least as long as the longest record in
your data file.

INFILE ’c:\MyRawData\President.dat’ LRECL=2000;

Check the SAS log to see that the maximum record length is as long as you think it should be.

38 The Little SAS Book

 2.5 Reading Raw Data Separated by Spaces

If the values in your raw data file are all separated by at
least one space,

1
 then using list input (also called free

formatted input) to read the data may be appropriate. List
input is an easy way to read raw data into SAS, but with
ease come a few limitations. You must read all the data in a
record—no skipping over unwanted values. Any missing
data must be indicated with a period. Character data, if

present, must be simple: no embedded spaces, and no values greater than eight characters in
length.

2
 If the data file contains dates or other values which need special treatment, then list

input may not be appropriate. This may sound like a lot of restrictions, but a surprising number
of data files can be read using list input.

The INPUT statement, which is part of the DATA step, tells SAS how to read your raw data.
To write an INPUT statement using list input, simply list the variable names after the INPUT
keyword in the order they appear in the data file. Generally, variable names must be 32
characters or fewer, start with a letter or an underscore, and contain only letters, underscores,
or numerals. If the values are character (not numeric) then place a dollar sign ($) after the
variable name. Leave at least one space between names, and remember to place a semicolon at
the end of the statement. The following is an example of a simple list style INPUT statement.

INPUT Name $ Age Height;

This statement tells SAS to read three data values. The $ after Name indicates that it is a
character variable, whereas the Age and Height variables are both numeric.

Example Your hometown has been overrun with toads this year. A local resident, having
heard of frog jumping in California, had the idea of organizing a toad jump to cap off the
annual town fair. For each contestant you have the toad’s name, weight, and the jump distance
from three separate attempts. If the toad is disqualified for any jump, then a period is used to
indicate missing data. Here is what the data file ToadJump.dat looks like:

Lucky 2.3 1.9 . 3.0
Spot 4.6 2.5 3.1 .5
Tubs 7.1 . . 3.8
Hop 4.5 3.2 1.9 2.6
Noisy 3.8 1.3 1.8
1.5
Winner 5.7 . . .

This data file does not look very neat, but it does meet all the requirements for list input: the
character data are eight characters or fewer and have no embedded spaces, all values are
separated by at least one space, and missing data are indicated by a period. Notice that the data
for Noisy have spilled over to the next data line. This is no problem since, by default, SAS will
go to the next data line to read more data if there are more variables in the INPUT statement
than there are values in the data line.

1
SAS can read files with other delimiters such as commas or tabs using list input. See sections 2.14 and 2.15.

2
 It is possible to override this constraint using the LENGTH statement, discussed in section 10.13, which can change the length

 of character variables from the default of 8 to anything between 1 and 32,767.

Chapter 2: Getting Your Data into SAS 39

Here is the SAS program that will read the data:

* Create a SAS data set named toads;
* Read the data file ToadJump.dat using list input;
DATA toads;
 INFILE ’c:\MyRawData\ToadJump.dat’;
 INPUT ToadName $ Weight Jump1 Jump2 Jump3;
* Print the data to make sure the file was read correctly;
PROC PRINT DATA = toads;
 TITLE ’SAS Data Set Toads’;
RUN;

The variables ToadName, Weight, Jump1, Jump2, and Jump3 are listed after the keyword INPUT
in the same order as they appear in the file. A dollar sign ($) after ToadName indicates that it is a
character variable; all the other variables are numeric. A PROC PRINT statement is used to print
the data values after reading them to make sure they are correct. The PRINT procedure, in its
simplest form, prints the values for all variables and all observations in a SAS data set. The TITLE
statement after the PROC PRINT tells SAS to put the text enclosed in quotation marks on the top of
each page of output. If you had no TITLE statement in your program, SAS would put the words
“The SAS System” at the top of each page.

The output will look like this:

 SAS Data Set Toads 1

 Toad
 Obs Name Weight Jump1 Jump2 Jump3

 1 Lucky 2.3 1.9 . 3.0
 2 Spot 4.6 2.5 3.1 0.5
 3 Tubs 7.1 . . 3.8
 4 Hop 4.5 3.2 1.9 2.6
 5 Noisy 3.8 1.3 1.8 1.5
 6 Winner 5.7 . . .

Because SAS had to go to a second data line to get the data for Noisy’s final jump, the following
note appears in the SAS log:

NOTE: SAS went to a new line when INPUT statement reached past the end of a line.

If you find this note in your SAS log when you didn’t expect it, then you may have a problem. If so,
look in section 10.4 which discusses this note in more detail.

40 The Little SAS Book

2.6 Reading Raw Data Arranged in Columns

Some raw data files do not have spaces (or other delimiters)
between all the values or periods for missing data—so the
files can’t be read using list input. But if each of the
variable’s values is always found in the same place in the
data line, then you can use column input as long as all the
values are character or standard numeric. Standard numeric
data contain only numerals, decimal points, plus and minus

signs, and E for scientific notation. Numbers with embedded commas or dates, for example, are
not standard.

Column input has the following advantages over list input:

�� spaces are not required between values

�� missing values can be left blank

�� character data can have embedded spaces

�� you can skip unwanted variables.

Survey data are good candidates for column input. Most answers to survey questionnaires are
single digits (0 through 9). If a space is entered between each value, then the file will be twice the
size and require twice the typing of a file without spaces. Data files with street addresses, which
often have embedded blanks, are also good candidates for column input. The street Martin
Luther King Jr. Boulevard should be read as one variable not five, as it would be with list input.
Data which can be read with column input can often also be read with formatted input or a
combination of input styles (discussed in sections 2.7, 2.8, and 2.9).

With column input, the INPUT statement takes the following form: after the INPUT keyword,
list the first variable’s name. If the variable is character, leave a space; then place a $. After the $,
or variable name if it is numeric, leave a space; then list the column or range of columns for that
variable. The columns are positions of the characters or numbers in the data line and are not to
be confused with columns like those you see in a spreadsheet. Repeat this for all the variables
you want to read. The following shows a simple INPUT statement using column style:

INPUT Name $ 1-10 Age 11-13 Height 14-18;

The first variable, Name, is character and the data values are in columns 1 through 10. The Age
and Height variables are both numeric, since they are not followed by a $, and data values for
both of these variables are in the column ranges listed after their names.

Example The local minor league baseball team, the Walla Walla Sweets, is keeping records
about concession sales. A ballpark favorite are the sweet onion rings which are sold at the
concession stands and also by vendors in the bleachers. The ballpark owners have a feeling that
in games with lots of hits and runs more onion rings are sold in the bleachers than at the
concession stands. They think they should send more vendors out into the bleachers when the
game heats up, but need more evidence to back up their feelings.

Chapter 2: Getting Your Data into SAS 41

For each home game they have the following information: name of opposing team, number of
onion ring sales at the concession stands and in the bleachers, the number of hits for each team,
and the final score for each team. The following is a sample of the data file named Onions.dat.
For your reference, a column ruler showing the column numbers has been placed above the data:

----+----1----+----2----+----3----+----4
Columbia Peaches 35 67 1 10 2 1
Plains Peanuts 210 2 5 0 2
Gilroy Garlics 151035 12 11 7 6
Sacramento Tomatoes 124 85 15 4 9 1

Notice that the data file has the following characteristics, all making it a prime candidate for
column input. All the values line up in columns, the team names have embedded blanks, missing
values are blank, and in one case there is not a space between data values. (Those Gilroy Garlics
fans must really love onion rings.)

The following program shows how to read these data using column input:

* Create a SAS data set named sales;
* Read the data file Onions.dat using column input;
DATA sales;
 INFILE ’c:\MyRawData\Onions.dat’;
 INPUT VisitingTeam $ 1-20 ConcessionSales 21-24 BleacherSales 25-28
 OurHits 29-31 TheirHits 32-34 OurRuns 35-37 TheirRuns 38-40;
* Print the data to make sure the file was read correctly;
PROC PRINT DATA = sales;
 TITLE ’SAS Data Set Sales’;
RUN;

The variable VisitingTeam is character (indicated by a $) and reads the visiting team’s name in
columns 1 through 20. The variables ConcessionSales and BleacherSales read the concession and
bleacher sales in columns 21 through 24 and 25 through 28, respectively. The number of hits for the
home team, OurHits, and the visiting team, TheirHits, are read in columns 29 through 31 and 32
through 34, respectively. The number of runs for the home team, OurRuns, is read in columns 35
through 37, while the number of runs for the visiting team, TheirRuns, is in columns 38 through 40.

The output will look like this:

 SAS Data Set Sales 1

 Concession Bleacher Our Their Our Their
 Obs VisitingTeam Sales Sales Hits Hits Runs Runs

 1 Columbia Peaches 35 67 1 10 2 1
 2 Plains Peanuts 210 . 2 5 0 2
 3 Gilroy Garlics 15 1035 12 11 7 6
 4 Sacramento Tomatoes 124 85 15 4 9 1

42 The Little SAS Book

01/01/60 1,002

01/03/60 2,012

02/01/60 4,336

0

2

31

1002

2012

4336

2.7 Reading Raw Data Not in Standard Format

Sometimes raw data are not straightforward numeric or
character. For example, we humans easily read the number
1,000,001 as one million and one, but your trusty computer sees
it as a character string. While the embedded commas make the
number easier for us to interpret, they make the number
impossible for the computer to recognize without some

instructions. In SAS, informats are used to tell the computer how to interpret these types of data.

Informats are useful anytime you have non-standard data. (Standard numeric data contain only
numerals, decimal points, minus signs, and E for scientific notation.) Numbers with embedded
commas or dollar signs are examples of non-standard data. Other examples include data in
hexadecimal or packed decimal formats. SAS has informats for reading these types of data as well.

Dates
1
 are perhaps the most common non-standard data. Using date informats, SAS will convert

conventional forms of dates like 10-31-2003 or 31OCT03 into a number, the number of days since
January 1, 1960. This number is referred to as a SAS date value. (Why January 1, 1960? Who
knows? Maybe 1960 was a good year for the SAS founders.) This turns out to be extremely useful
when you want to do calculations with dates. For example, you can easily find the number of
days between two dates by subtracting one from the other.

There are three general types of informats: character, numeric, and date. A table of selected SAS
informats appears in section 2.8. The three types of informats have the following general forms:

Character Numeric Date
 $informatw. informatw.d informatw.

The $ indicates character informats, INFORMAT is the name of the informat, w is the total width,
and d is the number of decimal places (numeric informats only). The period is very important
part of the informat name. Without a period, SAS may try to interpret the informat as a variable
name, which by default, cannot contain any special characters except the underscore. Two
informats do not have names: $w., which reads standard character data, and w.d, which reads
standard numeric data.

Use informats by placing the informat after the variable name in the INPUT statement; this is
called formatted input. The following INPUT statement is an example of formatted input:

INPUT Name $10. Age 3. Height 5.1 BirthDate MMDDYY10.;

The columns read for each variable are determined by the starting point and the width of the
informat. SAS always starts with the first column; so the data values for the first variable, Name,
which has an informat of $10., are in columns 1 through 10. Now the starting point for the
second variable is column 11, and SAS reads values for Age in columns 11 through 13. The
values for the third variable, Height, are in columns 14 through 18. The five columns include the
decimal place and the decimal point itself (150.3 for example). The values for the last variable,
BirthDate, start in column 19 and are in a date form.

1
Using dates in SAS is discussed in more detail in section 3.7.

Chapter 2: Getting Your Data into SAS 43

Example This example illustrates the use of informats for reading data. The following data file,
Pumpkin.dat, represents the results from a local pumpkin-carving contest. Each line includes the
contestant’s name, age, type (carved or decorated), the date the pumpkin was entered, and the
scores from each of five judges.

Alicia Grossman 13 c 10-28-2003 7.8 6.5 7.2 8.0 7.9
Matthew Lee 9 D 10-30-2003 6.5 5.9 6.8 6.0 8.1
Elizabeth Garcia 10 C 10-29-2003 8.9 7.9 8.5 9.0 8.8
Lori Newcombe 6 D 10-30-2003 6.7 5.6 4.9 5.2 6.1
Jose Martinez 7 d 10-31-2003 8.9 9.510.0 9.7 9.0
Brian Williams 11 C 10-29-2003 7.8 8.4 8.5 7.9 8.0

The following program reads these data. Please note there are many ways to input these data, so if
you imagined something else, that’s OK.

* Create a SAS data set named contest;
* Read the file Pumpkin.dat using formatted input;
DATA contest;
 INFILE ’c:\MyRawData\Pumpkin.dat’;
 INPUT Name $16. Age 3. +1 Type $1. +1 Date MMDDYY10.
 (Score1 Score2 Score3 Score4 Score5) (4.1);
* Print the data set to make sure the file was read correctly;
PROC PRINT DATA = contest;
 TITLE ’Pumpkin Carving Contest’;
RUN;

The variable Name has an informat of $16., meaning that it is a character variable 16 columns wide.
Variable Age has an informat of three, is numeric, three columns wide, and has no decimal places.
The +1 skips over one column. Variable Type is character, and it is one column wide. Variable Date
has an informat MMDDYY10. and reads dates in the form 10-31-2003 or 10/31/2003, each 10
columns wide. The remaining variables, Score1 through Score5, all require the same informat, 4.1.
By putting the variables and the informat in separate sets of parentheses, you only have to list the
informat once. Here are the results:

 Pumpkin Carving Contest 1

 Obs Name Age Type Date2 Score1 Score2 Score3 Score4 Score5

 1 Alicia Grossman 13 c 16006 7.8 6.5 7.2 8.0 7.9
 2 Matthew Lee 9 D 16008 6.5 5.9 6.8 6.0 8.1
 3 Elizabeth Garcia 10 C 16007 8.9 7.9 8.5 9.0 8.8
 4 Lori Newcombe 6 D 16008 6.7 5.6 4.9 5.2 6.1
 5 Jose Martinez 7 d 16009 8.9 9.5 10.0 9.7 9.0
 6 Brian Williams 11 C 16007 7.8 8.4 8.5 7.9 8.0

2
Notice that these dates are printed as the number of days since January 1, 1960. Section 4.5 discusses how to format these

 values into readable dates.

44 The Little SAS Book

2.8 Selected Informats

Definitions of commonly used informats
1
 along with the width range and default width.

Informat Definition Width range Default width

Character

$CHARw. Reads character data—does not trim leading
or trailing blanks

1-32,767 8 or length of
variable

$HEXw. Converts hexadecimal data to character data 1-32,767 2

$w. Reads character data—trims leading blanks 1-32,767 none

Date, Time, and Datetime2

DATEw. Reads dates in form: ddmmmyy or
ddmmmyyyy

7-32 7

DATETIMEw. Reads datetime values in the form:
ddmmmyy hh:mm:ss.ss

13-40 18

DDMMYYw. Reads dates in form: ddmmyy or
ddmmyyyy

6-32 6

JULIANw. Reads Julian dates in form: yyddd or
yyyyddd

5-32 5

MMDDYYw. Reads dates in form: mmddyy or
mmddyyyy

6-32 6

TIMEw. Reads time in form: hh:mm:ss.ss
(hours:minutes:seconds—24-hour clock)

5-32 8

Numeric

COMMAw.d Removes embedded commas and $,
converts left parentheses to minus sign

1-32 1

HEXw. Converts hexadecimal to floating-point values
if w is 16. Otherwise, converts to fixed-point.

1-16 8

IBw.d Reads integer binary data 1-8 4

PDw.d Reads packed decimal data 1-16 1

PERCENTw. Converts percentages to numbers 1-32 6

w.d Reads standard numeric data 1-32 none

1
 Check the SAS Help and Documentation for a complete list of informats.

2
SAS date values are the number of days since January 1, 1960. Time values are the number of seconds past midnight, and

 datetime values are the number of seconds past midnight January 1, 1960.

Chapter 2: Getting Your Data into SAS 45

Examples using the selected informats.

Informat Input data INPUT statement Results

Character

$CHARw. my cat
 my cat

INPUT Animal $CHAR10.; my cat
 my cat

$HEXw. 6C6C INPUT Name $HEX4.; 11 (ASCII)or
%% (EBCDIC)3

$w. my cat
 my cat

INPUT Animal $10.; my cat
my cat

Date, Time, and Datetime

DATEw. 1jan1961
1 jan 61

INPUT Day DATE10.; 366
366

DATETIMEw. 1jan1960 10:30:15
1jan1961,10:30:15

INPUT Dt DATETIME18.; 37815
31660215

DDMMYYw. 01.01.61

02/01/61

INPUT Day DDMMYY8.; 366
367

JULIANw. 61001
1961001

INPUT Day JULIAN7.; 366
366

MMDDYYw. 01-01-61
01/01/61

INPUT Day MMDDYY8.; 366
366

TIMEw. 10:30
10:30:15

INPUT Time TIME8.; 37800
37815

Numeric

COMMAw.d $1,000,001
(1,234)

INPUT Income COMMA10.; 1000001
-1234

HEXw. F0F3 INPUT Value HEX4.; 61683

IBw.d 4 INPUT Value IB4.; 255

PDw.d 4 INPUT Value PD4.; 255

PERCENTw. 5%
(20%)

INPUT Value PERCENT5.; 0.05
-0.2

w.d 1234
-12.3

INPUT Value 5.1; 123.4
-12.3

3
 The EBCDIC character set is used on most IBM mainframe computers, while the ASCII character set is used on most other

 computers. So, depending on the computer you are using, you will get one or the other.

4
These values cannot be printed.

46 The Little SAS Book

2.9 Mixing Input Styles

Each of the three major input styles has its own advantages. List style is the easiest; column
style is a bit more work; and formatted style is the hardest of the three. However, column and
formatted styles do not require spaces (or other delimiters) between variables and can read
embedded blanks. Formatted style can read special data such as dates. Sometimes you use one
style, sometimes another, and sometimes the easiest way is to use a combination of styles. SAS is
so flexible that you can mix and match any of the input styles for your own convenience.

Example The following raw data contain information about U.S. national parks: name, state
(or states as the case may be), year established, and size in acres:

Yellowstone ID/MT/WY 1872 4,065,493
Everglades FL 1934 1,398,800
Yosemite CA 1864 760,917
Great Smoky Mountains NC/TN 1926 520,269
Wolf Trap Farm VA 1966 130

You could write the INPUT statement for these data in many ways—that is the point of this
section. The following program shows one way to do it:

* Create a SAS data set named nationalparks;
* Read a data file Park.dat mixing input styles;
DATA nationalparks;
 INFILE ’c:\MyRawData\Park.dat’;
 INPUT ParkName $ 1-22 State $ Year @40 Acreage COMMA9.;
PROC PRINT DATA = nationalparks;
 TITLE ’Selected National Parks’;
RUN;

Notice that the variable ParkName is read with column style input, State and Year are read with
list style input, and Acreage is read with formatted style input. The output looks like this:

 Selected National Parks 1

 Obs ParkName State Year Acreage

 1 Yellowstone ID/MT/WY 1872 4065493
 2 Everglades FL 1934 1398800
 3 Yosemite CA 1864 760917
 4 Great Smoky Mountains NC/TN 1926 520269
 5 Wolf Trap Farm VA 1966 130

Sometimes programmers run into problems when they mix input styles. When SAS reads a line
of raw data it uses a pointer to mark its place, but each style of input uses the pointer a little
differently. With list style input, SAS automatically scans to the next non-blank field and starts
reading. With column style input, SAS starts reading in the exact column you specify. But with
formatted input, SAS just starts reading—wherever the pointer is, that is where SAS reads.
Sometimes you need to move the pointer explicitly, and you can do that by using the column
pointer, @n, where n is the number of the column SAS should move to.

Chapter 2: Getting Your Data into SAS 47

In the preceding program, the column pointer @40 tells SAS to move to column 40 before reading
the value for Acreage. If you removed the column pointer from the INPUT statement, as shown in
the following statement, then SAS would start reading Acreage right after Year:

INPUT ParkName $ 1-22 State $ Year Acreage COMMA9.;

The resulting output would look like this:

 Selected National Parks 1

 Obs ParkName State Year Acreage

 1 Yellowstone ID/MT/WY 1872 4065
 2 Everglades FL 1934 .
 3 Yosemite CA 1864 .
 4 Great Smoky Mountains NC/TN 1926 5
 5 Wolf Trap Farm VA 1966 .

Because Acreage was read with formatted input, SAS started reading right where the pointer was.
Here is the data file with a column ruler for counting columns at the top and asterisks marking the
place where SAS started reading the values of Acreage:

----+----1----+----2----+----3----+----4----+----5
Yellowstone ID/MT/WY 1872 * 4,065,493
Everglades FL 1934 * 1,398,800
Yosemite CA 1864 * 760,917
Great Smoky Mountains NC/TN 1926 * 520,269
Wolf Trap Farm VA 1966 * 130

The COMMA9. informat told SAS to read nine columns, and SAS did that even when those
columns were completely blank.

The column pointer, @n, has other uses too and can be used anytime you want SAS to skip
backwards or forwards within a data line. You could use it, for example, to skip over unneeded
data, or to read a variable twice using different informats.

48 The Little SAS Book

2.10 Reading Messy Raw Data

Sometimes you need to read data that just don’t line up in
nice columns or have pre-dictable lengths. When you
have these types of messy files, ordinary list, column, or
formatted input simply aren’t enough. You need more
tools in your bag: tools like the @‘character’ column
pointer and the colon modifier.

The @‘character’ column pointer In section 2.9 we showed you how you can use the @

column pointer to move to a particular column before reading data. However, sometimes you
don’t know the starting column of the data, but you do know that it always comes after a particular
character or word. For these types of situations, you can use the @‘character’ column pointer. For
example, suppose you have a data file that has information about dog ownership. Nothing in the
file lines up, but you know that the breed of the dog always follows the word Breed:. You could
read the dog’s breed using the following INPUT statement:

INPUT @’Breed:’ DogBreed $;

The colon modifier The above INPUT statement will work just fine as long as the dog’s breed
name is 8 characters or less (the default length for a character variable). So if the dog is a Shepherd
you’re fine, but if the dog is a Rottweiler, all you will get is Rottweil. If you assign the variable an
informat in the INPUT statement such as $20. to tell SAS that the variable’s field is 20 characters,
then SAS will read for 20 columns whether or not there is a space in those columns.

1
 So the

DogBreed variable may include unwanted characters which appear after the dog’s breed on the
data line. If you only want SAS to read until it encounters a space

2
, then you can use a colon

modifier on the informat. To use a colon modifier, simply put a colon (:) before the informat (e.g.
:$20. instead of $20.).

For example, given this line of raw data,

My dog Sam Breed: Rottweiler Vet Bills: $478

the following table shows the results you would get using different INPUT statements:

Statements Value of variable DogBreed
INPUT @’Breed:’ DogBreed $; Rottweil
INPUT @’Breed:’ DogBreed $20.; Rottweiler Vet Bill
INPUT @’Breed:’ DogBreed :$20.; Rottweiler

1 It is also possible to define a variable’s length in a LENGTH or INFORMAT statement instead of in an INPUT statement.
When a variable’s length is defined before the INPUT statement, then SAS will read until it encounters a space or reaches the
length of the variable—the same behavior as using the colon modifier. The INFORMAT statement is covered in section 2.21 and
the LENGTH statement is covered in section 10.13.

2 A space is the default delimiter. This method works for files with other delimiters as well. See sections 2.14 and 2.15 for more
information on reading delimited data.

Chapter 2: Getting Your Data into SAS 49

Example Web logs are a good example of messy data. The following data lines are part of a web
log for a dog care business website. The data lines start with the IP address of the computer
accessing the web page followed by other information including the date the file was accessed and
the file name.

130.192.70.235 - - [08/Jun/2001:23:51:32 -0700] "GET /rover.jpg HTTP/1.1" 200 66820
128.32.236.8 - - [08/Jun/2001:23:51:40 -0700] "GET /grooming.html HTTP/1.0" 200 8471
128.32.236.8 - - [08/Jun/2001:23:51:40 -0700] "GET /Icons/brush.gif HTTP/1.0" 200 89
128.32.236.8 - - [08/Jun/2001:23:51:40 -0700] "GET /H_poodle.gif HTTP/1.0" 200 1852
118.171.121.37 - - [08/Jun/2001:23:56:46 -0700] "GET /bath.gif HTTP/1.0" 200 14079
128.123.121.37 - - [09/Jun/2001:00:57:49 -0700] "GET /lobo.gif HTTP/1.0" 200 18312
128.123.121.37 - - [09/Jun/2001:00:57:49 -0700] "GET /statemnt.htm HTTP/1.0" 200 238
128.75.226.8 - - [09/Jun/2001:01:59:40 -0700] "GET /Icons/leash.gif HTTP/1.0" 200 98

We are interested in the date the files were accessed and the filename. You can see that because the
IP address is not always the same number of characters, the date does not line up in the same
column all the time. Also, not only does the filename not line up in columns, but the length of the
filename is highly variable. Here is a SAS program that can read this file:

DATA weblogs;
 INFILE 'c:\MyWebLogs\dogweblogs.txt';
 INPUT @'[' AccessDate DATE11. @'GET' File :$20.;
PROC PRINT DATA = weblogs;
 TITLE ‘Dog Care Web Logs’;
RUN;

This INPUT statement uses @‘[‘ to position the column pointer to read the date, then uses @‘GET’
to position the column pointer to read the filename. Because the filename is more than 8
characters, but not always the same number of characters, an informat with a colon modifier :$20. is
used to read the filename.

Here are the results of this program:

 Dog Care Web Logs 1

 Obs AccessDate3 File

 1 15134 /rover.jpg
 2 15134 /grooming.html
 3 15134 /Icons/brush.gif
 4 15134 /H_poodle.gif
 5 15134 /bath.gif
 6 15134 /lobo.gif
 7 15135 /statemnt.htm
 8 15135 /Icons/leash.gif

3
Notice that these dates are printed as the number of days since January 1, 1960. Section 4.5 discusses how to format these

values into readable dates.

50 The Little SAS Book

1
2
3

1

2

3

2.11 Reading Multiple Lines of Raw Data per Observation

In a typical raw data file each line of data represents one
observation, but sometimes the data for each observation
are spread over more than one line. Since SAS will auto-
matically go to the next line if it runs out of data before it has
read all the variables in an INPUT statement, you could just let
SAS take care of figuring out when to go to a new line. But if
you know that your data file has multiple lines of raw data per
observation, it is better for you to explicitly tell SAS when to go
to the next line than to make SAS figure it out. That way you

won’t get that suspicious SAS-went-to-a-new-line note in your log. To tell SAS when to skip to a
new line, you simply add line pointers to your INPUT statement.

The line pointers, slash (/) and pound-n (#n), are like road signs telling SAS, “Go this way.”
To read more than one line of raw data for a single observation, you simply insert a slash into
your INPUT statement when you want to skip to the next line of raw data. The #n line pointer
performs the same action except that you specify the line number. The n in #n stands for the
number of the line of raw data for that observation; so #2 means to go to the second line for that
observation, and #4 means go to the fourth line. You can even go backwards using the #n line
pointer, reading from line 4 and then from line 3, for example. The slash is simpler, but #n is
more flexible.

Example A colleague is trying to plan his next summer vacation, but he wants to go
someplace where the weather is just right. He obtains data from a meteorology database.
Unfortunately, he has not quite figured out how to export from this database and makes a rather
odd file.

The file contains information about temperatures for the month of July for Alaska, Florida, and
North Carolina. (If your colleague chooses the last state, maybe he can visit SAS headquarters.)
The first line contains the city and state, the second line lists the normal high temperature and
normal low (in degrees Fahrenheit), and the third line contains the record high and low:

Nome AK
55 44
88 29
Miami FL
90 75
97 65
Raleigh NC
88 68
105 50

#3

Chapter 2: Getting Your Data into SAS 51

The following program reads the weather data from a file named Temperature.dat:

* Create a SAS data set named highlow;
* Read the data file using line pointers;
DATA highlow;
 INFILE ’c:\MyRawData\Temperature.dat’;
 INPUT City $ State $
 / NormalHigh NormalLow
 #3 RecordHigh RecordLow;
PROC PRINT DATA = highlow;
 TITLE ’High and Low Temperatures for July’;
RUN;

The INPUT statement reads the values for City and State from the first line of data. Then the
slash tells SAS to move to column 1 of the next line of data before reading NormalHigh and
NormalLow. Likewise, the #3 tells SAS to move to column 1 of the third line of data for that
observation before reading RecordHigh and RecordLow. As usual, there is more than one way to
write this INPUT statement. You could replace the slash with #2 or replace #3 with a slash.

This note appears in the log:

NOTE: 9 records were read from the infile ’c:\MyRawData\Temperature.dat’.
 The minimum record length was 5.
 The maximum record length was 10.

NOTE: The data set WORK.HIGHLOW has 3 observations and 6 variables.

Notice that while nine records were read from the infile, the SAS data set contains just three
observations. Usually this would set off alarms in your mind, but here it confirms that indeed three
data lines were read for every observation just as planned. You should always check your log,
particularly when using line pointers.

The output looks like this:

 High and Low Temperatures for July 1

 Normal Normal Record Record
 Obs City State High Low High Low

 1 Nome AK 55 44 88 29
 2 Miami FL 90 75 97 65
 3 Raleigh NC 88 68 105 50

52 The Little SAS Book

2.12 Reading Multiple Observations per Line of Raw Data

There ought to be a Murphy’s law of data: whatever form
data can take, it will. Normally SAS assumes that each
line of raw data represents no more than one observation.
When you have multiple observations per line of raw

data, you can use double trailing at signs (@@) at the end of your INPUT statement. This line-
hold specifier is like a stop sign telling SAS, “Stop, hold that line of raw data.” SAS will hold that
line of data, continuing to read observations until it either runs out of data or reaches an INPUT
statement that does not end with a double trailing @.

Example Suppose you have a colleague who is planning a vacation and has obtained a file
containing data about rainfall (in inches) for the three cities he is considering. The file contains
the name of each city, the state, average rainfall for the month of July, and average number of
days with measurable precipitation in July. The raw data look like this:

Nome AK 2.5 15 Miami FL 6.75
18 Raleigh NC . 12

Notice that in this data file the first line stops in the middle of the second observation. The
following program reads these data from a file named Precipitation.dat and uses an @@ so SAS
does not automatically go to a new line of raw data for each observation:

* Input more than one observation from each record;
DATA rainfall;
 INFILE ’c:\MyRawData\Precipitation.dat’;
 INPUT City $ State $ NormalRain MeanDaysRain @@;
PROC PRINT DATA = rainfall;
 TITLE ’Normal Total Precipitation and’;
 TITLE2 ’Mean Days with Precipitation for July’;
RUN;

@@

Chapter 2: Getting Your Data into SAS 53

These notes will appear in the log:

NOTE: 2 records were read from the infile ’c:\MyRawData\Precipitation.dat’
 The minimum record length was 18.
 The maximum record length was 28.

NOTE: SAS went to a new line when INPUT statement reached past the
 end of a line.

NOTE: The data set WORK.RAINFALL has 3 observations and
 4 variables.

While only two records were read from the raw data file, the RAINFALL data set contains
three observations. The log also includes a note saying SAS went to a new line when the INPUT
statement reached past the end of a line. This means that SAS came to the end of a line in the
middle of an observation and continued reading with the next line of raw data. Normally these
messages would indicate a problem, but in this case they are exactly what you want.

The output looks like this:

 Normal Total Precipitation and 1
 Mean Days with Precipitation for July

 Normal Mean
 Obs City State Rain DaysRain

 1 Nome AK 2.50 15
 2 Miami FL 6.75 18
 3 Raleigh NC . 12

54 The Little SAS Book

A
A
A

A
A
B
A
B

2.13 Reading Part of a Raw Data File

At some time you may find that you need to read a small fraction of
the records in a large data file. For example, you might be reading
U.S. census data and want only female heads-of-household who have
incomes above $225,000 and live in Walla Walla, Washington. You could
read all the records in the data file and then throw out the unneeded
ones, but that would waste time.

Luckily, you don’t have to read all the data before you tell SAS whether to keep an observation.
Instead, you can read just enough variables to decide whether to keep the current observation,
then end the INPUT statement with an at sign (@), called a trailing at. This tells SAS to hold that
line of raw data. While the trailing @ holds that line, you can test the observation with an IF
statement to see if it’s one you want to keep. If it is, then you can read data for the remaining
variables with a second INPUT statement. Without the trailing @, SAS would automatically start
reading the next line of raw data with each INPUT statement.

The trailing @ is similar to the column pointer, @n, introduced in section 2.9. By specifying a
number after the @ sign, you tell SAS to move to a particular column. By using an
@ without specifying a column, it is as if you are telling SAS, “Stay tuned for more information.
Don’t touch that dial!” SAS will hold that line of data until it reaches either the end of the DATA
step, or an INPUT statement that does not end with a trailing @.

Example You want to read part of a raw data file containing local traffic data for freeways and
surface streets. The data include information about the type of street, name of street, the average
number of vehicles per hour traveling that street during the morning, and the average number of
vehicles per hour for the evening. Here are the raw data:

freeway 408 3684 3459
surface Martin Luther King Jr. Blvd. 1590 1234
surface Broadway 1259 1290
surface Rodeo Dr. 1890 2067
freeway 608 4583 3860
freeway 808 2386 2518
surface Lake Shore Dr. 1590 1234
surface Pennsylvania Ave. 1259 1290

Suppose you want to see only the freeway data at this point so you read the raw data file,
Traffic.dat, with this program:

* Use a trailing @, then delete surface streets;
DATA freeways;
 INFILE ’c:\MyRawData\Traffic.dat’;
 INPUT Type $ @;
 IF Type = ’surface’ THEN DELETE;
 INPUT Name $ 9-38 AMTraffic PMTraffic;
PROC PRINT DATA = freeways;
 TITLE ’Traffic for Freeways’;
RUN;

Chapter 2: Getting Your Data into SAS 55

Notice that there are two INPUT statements. The first reads the character variable Type and then
ends with an @. The trailing @ holds each line of data while the IF statement tests it. The second
INPUT statement reads Name (in columns 9 through 38), AMTraffic, and PMTraffic. If an
observation has a value of surface for the variable Type, then the second INPUT statement never
executes. Instead SAS returns to the beginning of the DATA step to process the next observation
and does not add the unwanted observation to the FREEWAYS data set. (Do not pass go, do not
collect $200.)

When you run this program, the log will contain the following two notes, one saying that eight
records were read from the input file and another saying that the new data set contains only three
observations:

NOTE: 8 records were read from the infile ’c:\MyRawData\Traffic.dat’.
 The minimum record length was 47.
 The maximum record length was 47.

NOTE: The data set WORK.FREEWAYS has 3 observations and 4 variables.

The other five observations had a value of surface for the variable Type and were deleted by the IF
statement. The output looks like this:

 Traffic for Freeways 1

 Obs Type Name AMTraffic PMTraffic
 1 freeway 408 3684 3459
 2 freeway 608 4583 3860
 3 freeway 808 2386 2518

Trailing @ versus double trailing @ The double trailing @, discussed in the previous
section, is similar to the trailing @. Both are line-hold specifiers; the difference is how long they
hold a line of data for input. The trailing @ holds a line of data for subsequent INPUT statements,
but releases that line of data when SAS returns to the top of the DATA step to begin building the
next observation. The double trailing @ holds a line of data for subsequent INPUT statements even
when SAS starts building a new observation. In both cases, the line of data is released if SAS
reaches a subsequent INPUT statement that does not contain a line-hold specifier.

56 The Little SAS Book

2.14 Controlling Input with Options in the INFILE Statement

So far in this chapter, we have seen ways to use the INPUT statement to read many different
types of raw data. When reading raw data files, SAS makes certain assumptions. For example,
SAS starts reading with the first data line and, if SAS runs out of data on a line, it automatically
goes to the next line to read values for the rest of the variables. Most of the time this is OK, but
some data files can’t be read using the default assumptions. The options in the INFILE statement
change the way SAS reads raw data files. The following options are useful for reading particular
types of data files. Place these options after the filename in the INFILE statement.

FIRSTOBS= The FIRSTOBS= option tells SAS at what line to begin reading data. This
is useful if you have a data file that contains descriptive text or header information at the
beginning, and you want to skip over these lines to begin reading the data. The following
data file, for example, has a description of the data in the first two lines:

Ice-cream sales data for the summer
Flavor Location Boxes sold
Chocolate 213 123
Vanilla 213 512
Chocolate 415 242

The following program uses the FIRSTOBS= option to tell SAS to start reading data on the third
line of the file:

DATA icecream;
 INFILE ’c:\MyRawData\Sales.dat’ FIRSTOBS = 3;
 INPUT Flavor $ 1-9 Location BoxesSold;
RUN;

OBS= The OBS= option can be used anytime you want to read only a part of your data file.
It tells SAS to stop reading when it gets to that line in the raw data file. Note that it does not
necessarily correspond to the number of observations. If, for example, you are reading two raw
data lines for each observation, then an OBS=100 would read 100 data lines, and the resulting
SAS data set would have 50 observations. The OBS= option can be used with the FIRSTOBS=
option to read lines from the middle of the file. For example, suppose the ice-cream sales data
had a remark at the end of the file that was not part of the data.

Ice-cream sales data for the summer
Flavor Location Boxes sold
Chocolate 213 123
Vanilla 213 512
Chocolate 415 242
Data verified by Blake White

With FIRSTOBS=3 and OBS=5, SAS will start reading this file on the third data line and stop
reading after the fifth data line.

DATA icecream;
 INFILE ’c:\MyRawData\Sales.dat’ FIRSTOBS = 3 OBS=5;
 INPUT Flavor $ 1-9 Location BoxesSold;
RUN;

Chapter 2: Getting Your Data into SAS 57

MISSOVER By default, SAS will go to the next data line to read more data if SAS has reached
the end of the data line and there are still more variables in the INPUT statement that have not
been assigned values. The MISSOVER option tells SAS that if it runs out of data, don’t go to the
next data line. Instead, assign missing values to any remaining variables. The following data file
illustrates where this option may be useful. This file contains test scores for a self-paced course.
Since not all students complete all the tests, some have more scores than others.

Nguyen 89 76 91 82
Ramos 67 72 80 76 86
Robbins 76 65 79

The following program reads the data for the five test scores, assigning missing values to tests not
completed:

DATA class102;
 INFILE ’c:\MyRawData\Scores.dat’ MISSOVER;
 INPUT Name $ Test1 Test2 Test3 Test4 Test5;
RUN;

TRUNCOVER You need the TRUNCOVER option when you are reading data using column
or formatted input and some data lines are shorter than others. If a variable’s field extends past the
end of the data line, then, by default, SAS will go to the next line to start reading the variable’s
value. This option tells SAS to read data for the variable until it reaches the end of the data line,
or the last column specified in the format or column range, whichever comes first. The next file
contains addresses and must be read using column or formatted input because the street names
have embedded blanks. Note that the data lines are all different lengths:

John Garcia 114 Maple Ave.
Sylvia Chung 1302 Washington Drive
Martha Newton 45 S.E. 14th St.

This program uses column input to read the address file. Because some of the addresses stop
before the end of the variable Street’s field (columns 22 through 37), you need the TRUNCOVER
option. Without the TRUNCOVER option, SAS would try to go to the next line to read the data for
Street on the first and third records.

DATA homeaddress;
 INFILE ’c:\MyRawData\Address.dat’ TRUNCOVER;
 INPUT Name $ 1-15 Number 16-19 Street $ 22-37;
RUN;

TRUNCOVER is similar to MISSOVER. Both will assign missing values to variables if the data
line ends before the variable’s field starts. But when the data line ends in the middle of a variable
field, TRUNCOVER will take as much as is there, whereas MISSOVER will assign the variable a
missing value.

58 The Little SAS Book

,

, ,
, ,
,

, ,

2.15 Reading Delimited Files with the DATA Step

Delimited files are raw data files that have a special
character separating data values. Many programs can save
data as delimited files, often with commas or tab characters
for delimiters. SAS gives you two options for the INFILE
statement that make it easy to read delimited data files: the
DLM= option and the DSD option.

The DLM= option If you read your data using list input, the DATA step expects your file
to have spaces between your data values. The DELIMITER=, or DLM=, option in the INFILE
statement allows you to read data files with other delimiters. The comma and tab characters are
common delimiters found in data files, but you could read data files with any delimiter character
by just enclosing the delimiter character in quotation marks after the DLM= option (i.e.,
DLM=’&’).

Example The following file is comma-delimited where students’ names are followed by the
number of books they read for each week in a summer reading program:

Grace,3,1,5,2,6
Martin,1,2,4,1,3
Scott,9,10,4,8,6

This program uses list input to read the books data file specifying the comma as the delimiter:

DATA reading;
 INFILE ’c:\MyRawData\Books.dat’ DLM = ’,’;
 INPUT Name $ Week1 Week2 Week3 Week4 Week5;
RUN;

If the same data had tab characters between values instead of commas, then you could use the
following program to read the file. This program uses the DLM=’09’X option. In ASCII, 09 is the
hexadecimal equivalent of a tab character, and the notation ‘09’X means a hexadecimal 09. If
your computer uses EBCDIC (IBM mainframes) instead of ASCII, then use DLM=’05’X.

DATA reading;
 INFILE ’c:\MyRawData\Books.txt’ DLM = ’09’X;
 INPUT Name $ Week1 Week2 Week3 Week4 Week5;
RUN;

By default, SAS interprets two or more delimiters in a row as a single delimiter. If your file has
missing values, and two delimiters in a row indicate a missing value, then you will also need the
DSD option in the INFILE statement.

The DSD option The DSD (Delimiter-Sensitive Data) option for the INFILE statement
does three things for you. First, it ignores delimiters in data values enclosed in quotation marks.
Second, it does not read quotation marks as part of the data value. Third, it treats two delimiters
in a row as a missing value. The DSD option assumes that the delimiter is a comma. If your
delimiter is not a comma then you can use the DLM= option with the DSD option to specify the
delimiter. For example, to read a tab-delimited ASCII file with missing values indicated by two
consecutive tab characters use

INFILE ’file-specification’ DLM=’09’X DSD;

Chapter 2: Getting Your Data into SAS 59

CSV files Comma-separated values files, or CSV files, are a common type of file that can be
read with the DSD option. Many programs, such as Microsoft Excel, can save data in CSV format.
These files have commas for delimiters and consecutive commas for missing values; if there are
commas in any of the data values, then those values are enclosed in quotation marks.

Example The following example illustrates how to read a CSV file using the DSD option. Jerry’s
Coffee Shop employs local bands to attract customers. Jerry keeps records of the number of cus-
tomers for each band, for each night they play in his shop. The band’s name is followed by the
date and the number of customers present at 8 p.m., 9 p.m., 10 p.m., and 11 p.m.

Lupine Lights,12/3/2003,45,63,70,
Awesome Octaves,12/15/2003,17,28,44,12
"Stop, Drop, and Rock-N-Roll",1/5/2004,34,62,77,91
The Silveyville Jazz Quartet,1/18/2004,38,30,42,43
Catalina Converts,1/31/2004,56,,65,34

Notice that one group’s name has embedded commas, and is enclosed in quotation marks. Also, the
last group has a missing data point for the 9 p.m. hour as indicated by two consecutive commas. Use
the DSD option in the INFILE statement to read this data file. It is also prudent, when using the DSD
option, to add the MISSOVER option if there is any chance that you have missing data at the end of
your data lines (as in the first line of this data file). The MISSOVER option tells SAS that if it runs out
of data, don’t go to the next data line to continue reading. Here is the program that will read this data
file:

DATA music;
 INFILE ’c:\MyRawData\Bands.csv’ DLM = ’,’ DSD MISSOVER;
 INPUT BandName :$30. GigDate :MMDDYY10. EightPM NinePM TenPM ElevenPM;
PROC PRINT DATA = music;
 TITLE ’Customers at Each Gig’;
RUN;

Notice that for BandName and GigDate we use colon modified informats. The colon modifier tells
SAS to read for the length of the informat (30 for BandName and 10 for GigDate), or until it
encounters a delimiter, whichever comes first. Because the names of the bands are longer than the
default length of 8 characters, we use the :$30. informat for BandName to read up to 30 characters.

Here are the results of the PROC PRINT:

 Customers at Each Gig 1

 Gig Eight Nine Ten Eleven
 Obs BandName Date1 PM PM PM PM

 1 Lupine Lights 16042 45 63 70 .
 2 Awesome Octaves 16054 17 28 44 12
 3 Stop, Drop, and Rock-N-Roll 16075 34 62 77 91
 4 The Silveyville Jazz Quartet 16088 38 30 42 43
 5 Catalina Converts 16101 56 . 65 34

1
Notice that these dates are printed as the number of days since January 1, 1960. Section 4.5 discusses how to format these

 values into readable dates.

60 The Little SAS Book

,

, ,
, ,
,

, ,

2.16 Reading Delimited Files with the IMPORT Procedure

We suspect that by now you have realized that with SAS there
is usually more than one way to accomplish the same result.
In section 2.15 we showed you how to read delimited data
files using the DATA step; now we are going to show you
how to read delimited files a different way: using the
IMPORT procedure.

1

There are a few things that PROC IMPORT does for you that make it easy to read certain types
of data files. PROC IMPORT will scan your data file and automatically determine the variable
types (character or numeric), will assign proper lengths to the character variables, and can
recognize some date formats.

2
 PROC IMPORT will treat two consecutive delimiters in your data

file as a missing value, will read values enclosed by quotation marks, and assign missing values to
variables when it runs out of data on a line. Also, if you want, you can use the first line in your data
file for the variable names. The IMPORT procedure actually writes a DATA step for you, and after
you submit your program, you can look in the Log window to see the DATA step it produced.

The simplest form of the IMPORT procedure is

PROC IMPORT DATAFILE = ’filename’ OUT = data-set;

where the file you want to read follows the DATAFILE= option, and the name of the SAS data set
you want to create follows the OUT= option. SAS will determine the file type by the extension of
the file as shown in the following table.

Type of File Extension DBMS Identifier
Comma-delimited .csv CSV
Tab-delimited .txt TAB
Delimiters other than commas or tabs DLM

If your file does not have the proper extension, or your file is of type DLM, then you must use
the DBMS= option in the PROC IMPORT statement. Use the REPLACE option if you already have
a SAS data set with the name you specified in the OUT= option, and you want to overwrite it. Here
is the general form of PROC IMPORT with both the REPLACE and the DBMS options:

PROC IMPORT DATAFILE = ’filename’ OUT = data-set
 DBMS = identifier REPLACE;

The IMPORT procedure will, by default, get variable names from the first line in your data file. If
you do not want this, then add the GETNAMES=NO statement after the PROC IMPORT state-
ment. PROC IMPORT will assign the variables the names VAR1, VAR2, VAR3, and so on. Also if
your data file is type DLM, PROC IMPORT assumes that the delimiter is a space. If you have a

1
The IMPORT procedure is available on UNIX, OpenVMS, and Windows only.

2
By default the IMPORT procedure will scan the first 20 rows of delimited files. If you have all missing data in these rows,

then the Import Wizard may not read the file correctly. To change the number of rows, enter the REGEDIT command on the
SAS command line, then select Find from the Edit menu and search for “GuessingRows” (make sure Value Names is
checked). Then double click on “GuessingRows” to change the value.

Chapter 2: Getting Your Data into SAS 61

different delimiter, then specify it in the DELIMITER= statement. The following shows both these
statements:

PROC IMPORT DATAFILE = ’filename’ OUT = data-set
 DBMS = DLM REPLACE;
 GETNAMES = NO;
 DELIMITER = ’delimiter-character’;
RUN;

Example The following example uses data about Jerry’s Coffee Shop where Jerry employs local
bands to attract customers. Jerry keeps records of the number of customers present throughout the
evening for each band. The data are the band name, followed by the gig date, and the number of
customers present at 8 p.m., 9 p.m., 10 p.m., and 11 p.m. Notice that one of the bands, “Stop, Drop,
and Rock-N-Roll,” has commas in the name of the band. When a data value contains the delimiter,
then the value must be enclosed in quotation marks.

Band Name,Gig Date,Eight PM,Nine PM,Ten PM,Eleven PM
Lupine Lights,12/3/2003,45,63,70,
Awesome Octaves,12/15/2003,17,28,44,12
”Stop, Drop, and Rock-N-Roll”,1/5/2004,34,62,77,91
The Silveyville Jazz Quartet,1/18/2004,38,30,42,43
Catalina Converts,1/31/2004,56,,65,34

Here is the program that will read this data file and print out the SAS data set after importing:

PROC IMPORT DATAFILE ='c:\MyRawData\Bands.csv' OUT = music REPLACE;
PROC PRINT DATA = music;
 TITLE 'Customers at Each Gig';
RUN;

Here are the results of the PROC PRINT. Notice that GigDate is a readable date. This is because
IMPORT automatically assigns informats and formats to some forms of dates. (See section 4.5 for a
discussion of formats.)

 Customers at Each Gig 1

 Obs Band_Name Gig_Date Eight_PM

 1 Lupine Lights 12/03/2003 45
 2 Awesome Octaves 12/15/2003 17
 3 Stop, Drop, and Rock-N-Roll 01/05/2004 34
 4 The Silveyville Jazz Quartet 01/18/2004 38
 5 Catalina Converts 01/31/2004 56

 Obs Nine_PM Ten_PM Eleven_PM

 1 63 70 .
 2 28 44 12
 3 62 77 91
 4 30 42 43
 5 . 65 34

62 The Little SAS Book

2.17 Reading PC Files with the IMPORT Procedure

If you have SAS/ACCESS for PC File Formats software, then you can use the IMPORT
procedure to import several types of PC files. The IMPORT procedure will scan your file to
determine variable types

1
 and will, by default, use the first row of data for the variable names.

In the Windows operating environment, you can import Microsoft Excel, Lotus, dBase, and
Microsoft Access files

2
. On UNIX systems you can import dBase files, and starting with SAS 9.1,

UNIX users can also read Microsoft Excel and Microsoft Access files. An alternative method of
reading PC files in the Windows operating environment which does not require SAS/ACCESS is
Dynamic Data Exchange (DDE) which is covered in section 2.18.

Microsoft Excel, Lotus, and dBase files Here is the general form of the IMPORT
procedure for reading PC files:

PROC IMPORT DATAFILE = ’filename’ OUT = data-set
 DBMS = identifier REPLACE;

where filename is the file you want to read and data-set is the name of the SAS data set you want to
create. The REPLACE option tells SAS to replace the SAS data set named in the OUT= option if it
already exists. If your data file has the proper extension, as shown in the following table, then you
may not need the DBMS= option. Of course, it never hurts to specify the DBMS.

Type of File Extension DBMS Identifier
Microsoft Excel .xls EXCEL

3

 EXCEL5
 EXCEL4
Lotus .wk4 WK4
 .wk3 WK3
 .wk1 WK1
 dBase .dbf DBF

If you are reading a Microsoft Excel file, and you have more than one sheet in your file, then you
can specify which sheet to read using the following statement:

SHEET=name-of-sheet;

By default, the IMPORT procedure will take the variable names from the first row of the
spreadsheet (Microsoft Excel and Lotus only). If you do not want this, then you can add the
following statement to the procedure and SAS will name the variables F1, F2, and so on.

GETNAMES=NO;

1
 By default the IMPORT procedure will scan the first 8 rows for Microsoft Excel files. If you have all missing data in these

rows, then the IMPORT procedure may not read the file correctly. To change the number of rows, submit the REGEDIT
command from the Windows command line (from the Start menu, select Run). Select Find from the Edit menu, and search
for “TypeGuessRows”. Double-click on TypeGuessRows to change the value.

2
If you are running Microsoft Windows 64-Bit Edition, then you cannot read Microsoft Access or Microsoft Excel 97,

Excel 2000, or Excel 2002 files.

3
 The DBMS identifiers, EXCEL, EXCEL2002, EXCEL2000, and EXCEL97, are interchangeable since all these types of Microsoft

Excel files have the same format. If you want to read a Microsoft Excel4 or Microsoft Excel5 file, then you must specify the
DBMS identifier.

Chapter 2: Getting Your Data into SAS 63

Microsoft Access Files If you want to read Microsoft Access files, then instead of using the
DATAFILE= option, you need a DATABASE= and a DATATABLE=option as follows

4
:

PROC IMPORT DATABASE = ’database-path’ DATATABLE = ’table-name’
 OUT = data-set DBMS = identifier REPLACE;

The following are the DBMS identifiers for Microsoft Access:

Type of File Extension DBMS Identifier
Microsoft Access .mdb ACCESS

5

 ACCESS97

Example Suppose you have the following Microsoft Excel spreadsheet which contains data
about onion ring sales for the local minor league baseball team games. The visiting team name is
followed by the sales in the concession stands and in the bleachers, then the number of hits and
runs for each team.

The following program reads the Microsoft Excel file using the IMPORT procedure. Microsoft
Excel does not need to be running to use the IMPORT procedure.

* Read an Excel spreadsheet using PROC IMPORT;
PROC IMPORT DATAFILE = 'c:\MyExcelFiles\Onions.xls' OUT = sales;
PROC PRINT DATA = sales;
 TITLE 'SAS Data Set Read From Excel File';
RUN;

Here are the results:

 SAS Data Set Read From Excel File 1

 Their_ Their_
Obs Visiting_Team C_Sales B_Sales Our_Hits Hits Our_Runs Runs

 1 Columbia Peaches 35 67 1 10 2 1
 2 Plains Peanuts 210 . 2 5 0 2
 3 Gilroy Garlics 15 1035 12 11 7 6
 4 Sacramento Tomatoes 124 85 15 4 9 1

4 Additional options may be needed if your Microsoft Access database is password protected. See the SAS Help and
Documentation for more information.

5 The DBMS identifiers ACCESS, ACCESS2000, and ACCESS2002 are interchangeable since all these types of Microsoft Access
files have the same format. If you want to read a Microsoft Access 97 file, then you must specify the DBMS identifier.

64 The Little SAS Book

2.18 Reading PC Files with DDE

One method for reading PC files is Dynamic Data Exchange (DDE). DDE has some advantages
and disadvantages when compared to other methods of reading PC files. DDE can only be used in
the Windows operating environment, and the application (such as Microsoft Excel) must be
running on the computer while SAS is accessing the file. But DDE does allow you to directly
access data stored in PC files and it does not require any additional SAS products to be licensed.
There are several ways to access data through DDE. We will present three methods:

�� copying data to the clipboard

�� specifying the DDE triplet

�� starting the PC application from SAS, then reading the data.

Copying data to the clipboard If you don’t want to be bothered with determining the DDE
triplet, then you can just copy the rows and columns that you want to read into SAS onto the
clipboard. Then you use the CLIPBOARD keyword in the DDE FILENAME statement. For
example, suppose you have the following spreadsheet open in Microsoft Excel.

Copy the rows and columns you want to read into SAS (A2 to G5) onto the clipboard, then,
without closing Microsoft Excel, submit the following SAS program:

* Read an Excel spreadsheet using DDE;
FILENAME baseball DDE 'CLIPBOARD';
DATA sales;
 INFILE baseball NOTAB DLM='09'x DSD MISSOVER;
 LENGTH VisitingTeam $ 20;
 INPUT VisitingTeam CSales BSales OurHits TheirHits OurRuns TheirRuns;
RUN;

The FILENAME statement defines a fileref (BASEBALL) as type DDE and specifies that you want
to read the contents of the clipboard. By default, DDE assumes there are spaces between your data
values. So, if you have embedded spaces in your data, then you will need the NOTAB and the
DLM=‘09’x options in the INFILE statement. These two options tell SAS to put a tab character
(NOTAB) between values and define the tab character as the delimiter (DLM=‘09’x). In addition, if
you have missing values in your data, you will want to add the DSD and MISSOVER options to the
INFILE statement. The DSD option treats two delimiters in a row as missing data and the
MISSOVER options tells SAS not to go to the next data line to continue reading data if it runs out of
data on the current line.

Specifying the DDE triplet The clipboard method is easy, but it requires you to take the
extra step of copying the data to the clipboard before you run the SAS program. If you know the
DDE triplet for the data you want to read, then you can just specify the triplet in the FILENAME
statement. However figuring out what the DDE triplet is, can be a little tricky. Each application

Chapter 2: Getting Your Data into SAS 65

has its own way of specifying a DDE triplet. In general, the DDE triplet takes on the following
form:

application | topic ! item

Specific information about DDE triplets can be found in the documentation for the PC application.
However, there is a way to find out the DDE triplet for your data from within SAS. First, copy the
data you want onto the clipboard, then toggle to your SAS session. From the Solutions menu, select
Accessories. Then select DDE Triplet. A window will appear that will give the DDE triplet for
the data that you copied to the clipboard. For example, the DDE triplet for the spreadsheet shown is

Excel|C:\MyFiles\[BaseBall.xls]sheet1!R2C1:R5C7

So, to read the same data by specifying the DDE triplet, you would use the following FILENAME
statement and the rest of the program is the same:

FILENAME baseball DDE 'Excel|C:\MyFiles\[BaseBall.xls]sheet1!R2C1:R5C7';

Starting the application from SAS With both the previous examples, the PC application
must first be running before you can run the SAS program. Since this is sometimes inconvenient,
you may want to start the application from within SAS, then read the data using DDE. You need to
add two things to your SAS program to do this. First, you need the NOXWAIT and NOXSYNC
systems options, then you need to use the X statement. Here is an example program:

* Read an Excel spreadsheet using DDE;
OPTIONS NOXSYNC NOXWAIT;
X '"C:\MyFiles\BaseBall.xls"';
FILENAME baseball DDE 'Excel|C:\MyFiles\[BaseBall.xls]sheet1!R2C1:R5C7';
DATA sales;
 INFILE baseball NOTAB DLM='09'x DSD MISSOVER;
 LENGTH VisitingTeam $ 20;
 INPUT VisitingTeam CSales BSales OurHits TheirHits OurRuns TheirRuns;
RUN;

The NOXWAIT and the NOXSYNC options tell SAS not to wait for input from the user, and to
return control back to SAS after executing the command. The X statement simply tells Windows to
execute the program or open the file that follows in quotation marks. Notice that there are two sets
of quotation marks around the filename. If you have embedded spaces in the path for your
filename, then you need to enclose the filename in two sets of quotation marks. Note that using
this method, you must specify the DDE triplet in the FILENAME statement.

66 The Little SAS Book

2.19 Temporary versus Permanent SAS Data Sets

SAS data sets are available in two varieties: temporary and permanent. A temporary SAS data set
is one that exists only during the current job or session and is automatically erased by SAS when
you finish. If a SAS data set is permanent, that doesn’t mean that it lasts for eternity, just that it
remains when the job or session is finished.

Each type of data set has its own advantages. Sometimes you want to keep a data set for later
use, and sometimes you don’t. In this book, most of our examples use temporary data sets
because we don’t want to clutter up your disks. But, in general, if you use a data set more than
once, it is more efficient to save it as a permanent SAS data set than to create a new temporary
SAS data set every time you want to use the data.

SAS data set names All SAS data sets have a two-level name such as WORK.BIKESALES,
with the two levels separated by a period. The first level of a SAS data set name, WORK in this
case, is called its libref (short for SAS data library reference). A libref is like an arrow pointing to a
particular location. Sometimes a libref refers to a physical location, such as a floppy disk or CD,
while other times it refers to a logical location such as a directory or folder. The second level,
BIKESALES, is the member name that uniquely identifies the data set within the library.

Both the libref and member name follow the standard rules for valid SAS names. They must start
with a letter or underscore and contain only letters, numerals, or underscores. However, librefs
cannot be longer than 8 characters while member names can be up to 32 characters long.

You never explicitly tell SAS to make a data set temporary or permanent, it is just implied by the
name you give the data set when you create it. Most data sets are created in DATA steps, but
PROC steps can also create data sets. If you specify a two-level name (and the libref is something
other than WORK) then your data set will be permanent. If you specify just one level of the data
set name (as we have in most of the examples in this book), then your data set will be temporary.
SAS will use your one-level name as the member name and automatically append the libref
WORK. By definition, any SAS data set with a libref of WORK is a temporary data set and will be
erased by SAS at the end of your job or session. Here are some sample DATA statements and the
characteristics of the data sets they create:

DATA statement Libref Member name Type

DATA ironman; WORK ironman temporary
DATA WORK.tourdefrance; WORK tourdefrance temporary
DATA Mylib.doublecentury; Mylib doublecentury permanent

Temporary SAS data sets The following program creates and then prints a temporary
SAS data set named DISTANCE:

DATA distance;
 Miles = 26.22;
 Kilometers = 1.61 * Miles;
PROC PRINT DATA = distance;
RUN;

Chapter 2: Getting Your Data into SAS 67

Notice that the libref WORK does not appear in the DATA statement. Because the data set has
just a one-level name, SAS assigns the default library, WORK, and uses DISTANCE as the
member name within that library. The log contains this note with the complete, two-level name:

NOTE: The data set WORK.DISTANCE has 1 observations and 2 variables.

Permanent SAS data sets Before you can use a libref, you need to define it. You can define

libraries using the New Library window in SAS Explorer (covered in section 1.11). You can also
use the LIBNAME statement (covered in section 2.20) or you can let SAS define the libref for you
using direct referencing (covered in section 2.21)

1
.

The Mylib library, defined in
the New Library window
shown in the figure, points to
the ‘Ruiz Racing Bicycles’
folder under the ‘Documents
and Settings’ folder, on the C
drive (Windows).

The following program is the same as the preceding one except that it creates a permanent SAS
data set. Notice that a two-level name appears in the DATA statement.

DATA Mylib.distance;
 Miles = 26.22;
 Kilometers = 1.61 * Miles;
PROC PRINT DATA = Mylib.distance;
RUN;

This time the log contains this note:

NOTE: The data set MYLIB.DISTANCE has 1 observations and 2 variables.

This is a permanent SAS data set because the libref is not WORK.

1
With batch processing under OS/390 or z/OS, you may also use Job Control Language (JCL). The DDname is your libref.

68 The Little SAS Book

SAS data library

libref

2.20 Using Permanent SAS Data Sets with LIBNAME Statements

A libref is a nickname that corresponds to the location of a SAS data
library. When you use a libref as the first level in the name of a SAS
data set, SAS knows to look for that data set in that location. This
section shows you how to define a libref using the LIBNAME
statement which is the most universal (and therefore most portable)
method of creating a libref. You can also define a libref using the
New Library window (covered in section 1.11) or for
some computers, operating environment control language.

1
 The

basic form of the LIBNAME statement is

 LIBNAME libref ’your-SAS-data-library’;

After the keyword LIBNAME, you specify the libref and then the location of your permanent
SAS data set in quotation marks. Librefs must be eight characters or shorter; start with a letter or
underscore; and contain only letters, numerals, or underscores. Here is the general form of
LIBNAME statements for individual operating environments:

Windows: LIBNAME libref ’drive:\directory’;
UNIX: LIBNAME libref ’/home/path’;
OpenVMS: LIBNAME libref ’[userid.directory]’;
OS/390 or z/OS: LIBNAME libref ’data-set-name’;

Creating a permanent SAS data set The following example creates a permanent SAS
data set containing information about magnolia trees. For each type of tree the raw data file
includes the scientific name, common name, maximum height, age at first blooming when
planted from seed, whether evergreen or deciduous, and color of flowers.

M. grandiflora Southern Magnolia 80 15 E white
M. campbellii 80 20 D rose
M. liliiflora Lily Magnolia 12 4 D purple
M. soulangiana Saucer Magnolia 25 3 D pink
M. stellata Star Magnolia 10 3 D white

This program sets up a libref named PLANTS pointing to the MySASLib directory on the C drive
(Windows). Then it reads the raw data from a file called Mag.dat, creating a permanent SAS data
set named MAGNOLIA which is stored in the PLANTS library.

LIBNAME plants ’c:\MySASLib’;
DATA plants.magnolia;
 INFILE ’c:\MyRawData\Mag.dat’;
 INPUT ScientificName $ 1-14 CommonName $ 16-32 MaximumHeight
 AgeBloom Type $ Color $;
RUN;

1
With batch processing under OS/390 or z/OS, you may use Job Control Language (JCL). The DDname is your libref.

Chapter 2: Getting Your Data into SAS 69

The log contains this note showing the two-level data set name:

NOTE: The data set PLANTS.MAGNOLIA has 5 observations and 6 variables.

If you print a directory of files on your computer, you will not see a file named
PLANTS.MAGNOLIA. That is because operating environments have their own systems for
naming files. When run under Windows, UNIX, or OpenVMS, this data set will be called
magnolia.sas7bdat. Under OS/390 or z/OS, the filename would be the data-set-name
specified in the LIBNAME statement.

Reading a permanent SAS data set To use a permanent SAS data set, you can include a
LIBNAME statement in your program and refer to the data set by its two-level name. For instance,
if you wanted to go back later and print the permanent data set created in the last example, you
could use the following statements:

LIBNAME example ’c:\MySASLib’;
PROC PRINT DATA = example.magnolia;
 TITLE ’Magnolias’;
RUN;

This time the libref in the LIBNAME statement is EXAMPLE instead of PLANTS, but it points to
the same location as before, the MySASLib directory on the C drive. The libref can change, but the
member name, MAGNOLIA, stays the same.

The output looks like this:

 Magnolias 1

 Maximum Age
 Obs ScientificName CommonName Height Bloom Type Color

 1 M. grandiflora Southern Magnolia 80 15 E white
 2 M. campbellii 80 20 D rose
 3 M. liliiflora Lily Magnolia 12 4 D purple
 4 M. soulangiana Saucer Magnolia 25 3 D pink
 5 M. stellata Star Magnolia 10 3 D white

70 The Little SAS Book

2.21 Using Permanent SAS Data Sets by Direct Referencing

If you don’t want to be bothered with setting up librefs and defining SAS libraries, but you still
want to use permanent SAS data sets, then you can use direct referencing. Direct referencing still
uses SAS libraries, but instead of defining the library yourself, you let SAS do it for you.

Using direct referencing is easy, just take your operating environment’s name for a file, enclose it in
quotation marks, and put it in your program. The quotation marks tell SAS that this is a permanent
SAS data set. Here is the general form of the DATA statement for creating permanent SAS data sets
under different operating environments:

Windows: DATA ’drive:\directory\filename’;
UNIX: DATA ’/home/path/filename’;
OpenVMS: DATA ’[userid.directory]filename’;
OS/390 or z/OS: DATA ’data-set-name’;

For directory-based operating environments, if you leave out the directory or path, then SAS uses
the current working directory. For example, this statement would create a permanent SAS data set
named TREES in your current working directory.

DATA ’trees’;

For UNIX and OpenVMS operating environments, by default, your current directory is the
directory where you started SAS. You can change the current directory for the SAS session by
choosing Change Directory from the Options menu of the Tools pull-down menu. Under
Windows the name of the current working directory is displayed at the bottom of the SAS window.
You can change the directory for the current SAS session by double-clicking on the directory name
which will open the Change Folder window.

Example The following example creates a permanent SAS data set containing information
about magnolia trees. For each type of tree the raw data file includes the scientific name,
common name, maximum height, age at first blooming when planted from seed, whether
evergreen or deciduous, and color of flowers.

M. grandiflora Southern Magnolia 80 15 E white
M. campbellii 80 20 D rose
M. liliiflora Lily Magnolia 12 4 D purple
M. soulangiana Saucer Magnolia 25 3 D pink
M. stellata Star Magnolia 10 3 D white

This program reads the raw data from a file called Mag.dat, creating a permanent SAS data set
named MAGNOLIA. The MAGNOLIA data set is stored in the MySASLib directory on the C
drive (Windows).

DATA ’c:\MySASLib\magnolia’;
 INFILE ’c:\MyRawData\Mag.dat’;
 INPUT ScientificName $ 1-14 CommonName $ 16-32 MaximumHeight
 AgeBloom Type $ Color $;
RUN;

If you look in your SAS log you will see this note:

NOTE: The data set c:\MySASLib\magnolia has 5 observations and 6 variables.

Chapter 2: Getting Your Data into SAS 71

This is a permanent SAS data set, so SAS will not erase it. If you list the files in the MySASLib
directory, you will see a file named magnolia.sas7bdat. Notice that SAS automatically appended a
file extension, even though no extension appeared in the SAS program.

When you put quotation marks around your data set name, you
are using direct referencing, and SAS creates a permanent SAS
data set. Since you haven't specified a libref, SAS makes up a
libref for you. You don’t need to know the name of the libref
that SAS makes up, but it is there and, you can see it in the
Active Libraries window. This is what the Active Libraries
window looks like after running the previous program. SAS
has created a library named Wc000001 which contains the
MAGNOLIA data set.

Reading SAS data sets using direct referencing To
read a permanent SAS data set using direct referencing, simply enclose the path and name for the
data set in quotation marks wherever you would use a SAS data set name. For example, to print
the MAGNOLIA data set, you could use the following statements:

PROC PRINT DATA = ’c:\MySASLib\magnolia’;
 TITLE ’Magnolias’;
RUN;

The output looks like this:

 Magnolias 1

 Maximum Age
 Obs ScientificName CommonName Height Bloom Type Color

 1 M. grandiflora Southern Magnolia 80 15 E white
 2 M. campbellii 80 20 D rose
 3 M. liliiflora Lily Magnolia 12 4 D purple
 4 M. soulangiana Saucer Magnolia 25 3 D pink
 5 M. stellata Star Magnolia 10 3 D white

72 The Little SAS Book

2.22 Listing the Contents of a SAS Data Set

To use a SAS data set, all you need to do is tell SAS the name and location of the data set
you want, and SAS will figure out what is in it. SAS can do this because SAS data sets are self-
documenting, which is another way of saying that SAS automatically stores information about
the data set (also called the descriptor portion) along with the data. You can’t display a SAS data
set on your computer screen using a word processor. However, there is an easy way to get a
description of a SAS data set; you simply run the CONTENTS procedure.

PROC CONTENTS is a simple procedure. In most cases you just type the keywords PROC
CONTENTS and specify the data set you want with the DATA= option:

PROC CONTENTS DATA = data-set;

If you omit the DATA= option, then by default SAS will use the most recently created data set.

Example The following DATA step creates a data set so we can run PROC CONTENTS:

DATA funnies;
 INPUT Id Name $ Height Weight DoB MMDDYY8.;
 LABEL Id = ’Identification no.’
 Height = ’Height in inches’
 Weight = ’Weight in pounds’
 DoB = ’Date of birth’;
 INFORMAT DoB MMDDYY8.;
 FORMAT DoB WORDDATE18.;
 DATALINES;
53 Susie 42 41 07-11-81
54 Charlie 46 55 10-26-54
55 Calvin 40 35 01-10-81
56 Lucy 46 52 01-13-55
 ;
* Use PROC CONTENTS to describe data set funnies;
PROC CONTENTS DATA = funnies;
RUN;

Note that the DATA step above includes a LABEL statement. For each variable, you can specify a
label up to 256 characters long. These optional labels allow you to document your variables in
more detail than is possible with just variable names. If you specify a LABEL statement in a
DATA step, then the descriptions will be stored in the data set and will be printed by PROC
CONTENTS. You can also use LABEL statements in PROC steps to customize your reports, but
then the labels apply only for the duration of the PROC step and are not stored in the data set.

INFORMAT and FORMAT statements also appear in this program. You can use these optional
statements to associate informats or formats with variables. Just as informats give SAS special
instructions for reading a variable, formats give SAS special instructions for writing a variable.
If you specify an INFORMAT or FORMAT statement in a DATA step, then the name of that
informat or format will be saved in the data set and printed by PROC CONTENTS. FORMAT
statements, like LABEL statements, can be used in PROC steps to customize your reports, but
then the name of the format is not stored in the data set.

1

1
Sections 4.5 and 4.6 discuss standard SAS formats more thoroughly.

Chapter 2: Getting Your Data into SAS 73

The output from PROC CONTENTS is like a table of contents for your data set:

 The CONTENTS Procedure

� Data Set Name WORK.FUNNIES � Observations 4
 Member Type DATA � Variables 5
 Engine V9 Indexes 0
� Created 13:36 Monday, May 12, 2003 Observation Length 40
 Last Modified 13:36 Monday, May 12, 2003 Deleted Observations 0
 Protection Compressed NO
 Data Set Type Sorted NO
 Label
 Data Representation WINDOWS
 Encoding wlatin1 wlatin1 Western (Windows)

 -----Engine/Host Dependent Information-----
Data Set Page Size 4096
Number of Data Set Pages 1
First Data Page 1
Max Obs per Page 101
Obs in First Data Page 4
Number of Data Set Repairs 0
File Name C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\SAS
 Temporary Files_TD832\funnies.sas7bdat
Release Created 9.0000M0
Host Created XP_HOME

 -----Alphabetic List of Variables and Attributes-----
Variable �Type �Len �Format �Informat �Label

5 DoB Num 8 WORDDATE18. MMDDYY8. Date of birth
3 Height Num 8 Height in inches
1 Id Num 8 Identification no.
2 Name Char 8
4 Weight Num 8 Weight in pounds

The output starts with information about your data set and then describes each variable.

For the data set For each variable

� Data set name � Type (numeric or character)
� Number of observations � Length (storage size in bytes)
� Number of variables � Format for printing (if any)
� Date created � Informat for input (if any)

� Label (if any)

3

From Alice Through the Looking Glass by Lewis Carroll. Public domain.

‘‘
’’

Contrariwise,” continued
Tweedledee,” if it was so, it
might be; and if it were so, it
would be; but as it isn’t, it ain’t.
That’s logic.

LEWIS CARROLL

CHAPTER 3

Working with Your Data

3.1 Creating and Redefining Variables 76

3.2 Using SAS Functions 78

3.3 Selected SAS Functions 80

3.4 Using IF-THEN Statements 82

3.5 Grouping Observations with IF-THEN/ELSE Statements 84

3.6 Subsetting Your Data 86

3.7 Working with SAS Dates 88

3.8 Selected Date Informats, Functions, and Formats 90

3.9 Using the RETAIN and Sum Statements 92

3.10 Simplifying Programs with Arrays 94

3.11 Using Shortcuts for Lists of Variable Names 96

76 The Little SAS Book

3.1 Creating and Redefining Variables

If someone were to compile a list of the most popular things to do with SAS software, creating
and redefining variables would surely be on it. Fortunately, SAS is flexible and uses a common
sense approach to these tasks. You create and redefine variables with assignment statements
using this basic form:

variable = expression;

On the left side of the equal sign is a variable name, either new or old. On the right side of the
equal sign may appear a constant, another variable, or a mathematical expression. Here are
examples of these basic types of assignment statements:

Type of expression Assignment statement
numeric constant Qwerty = 10;
character constant Qwerty = 'ten';
a variable Qwerty = OldVar;
addition Qwerty = OldVar + 10;
subtraction Qwerty = OldVar - 10;
multiplication Qwerty = OldVar * 10;
division Qwerty = OldVar / 10;
exponentiation Qwerty = OldVar ** 10;

Whether the variable Qwerty is numeric or character depends on the expression that defines it.
When the expression is numeric, Qwerty will be numeric; when it is character, Qwerty will be
character.

When deciding how to interpret your expression, SAS follows the standard mathematical rules
of precedence: SAS performs exponentiation first, then multiplication and division, followed by
addition and subtraction. You can use parentheses to override that order. Here are two similar
SAS statements showing that a couple of parentheses can make a big difference:

Assignment statement Result
x = 10 * 4 + 3 ** 2; x = 49
x = 10 * (4 + 3 ** 2); x = 130

While SAS can read expressions with or without parentheses, people often can’t. If you use
parentheses, your programs will be a lot easier to read.

Example The following raw data are from a survey of home gardeners. Gardeners were asked
to estimate the number of pounds they harvested for four crops: tomatoes, zucchini, peas, and
grapes.

Gregor 10 2 40 0
Molly 15 5 10 1000
Luther 50 10 15 50
Susan 20 0 . 20

Chapter 3: Working with Your Data 77

This program reads the data from a file called Garden.dat and then modifies the data:

* Modify homegarden data set with assignment statements;
DATA homegarden;
 INFILE 'c:\MyRawData\Garden.dat';
 INPUT Name $ 1-7 Tomato Zucchini Peas Grapes;
 Zone = 14;
 Type = 'home';
 Zucchini = Zucchini * 10;
 Total = Tomato + Zucchini + Peas + Grapes;
 PerTom = (Tomato / Total) * 100;
PROC PRINT DATA = homegarden;
 TITLE 'Home Gardening Survey';
RUN;

This program contains five assignment statements. The first creates a new variable, Zone, equal to a
numeric constant, 14. The variable Type is set equal to a character constant, home. The variable
Zucchini is multiplied by 10 because that just seems natural for zucchini. Total is the sum for all the
types of plants. PerTom is not a genetically engineered tomato but the percentage of harvest which
were tomatoes. The report from PROC PRINT contains all the variables, old and new:

 Home Gardening Survey 1

 Obs Name Tomato Zucchini Peas Grapes Zone Type Total PerTom

 1 Gregor 10 20 40 0 14 home 70 14.2857
 2 Molly 15 50 10 1000 14 home 1075 1.3953
 3 Luther 50 100 15 50 14 home 215 23.2558
 4 Susan 20 0 . 20 14 home . .

Notice that the variable Zucchini appears only once because the new value replaced the old value.
The other four assignment statements each created a new variable. When a variable is new, SAS
adds it to the data set you are creating. When a variable already exists, SAS replaces the original
value with the new one. Using an existing name has the advantage of not cluttering your data set
with a lot of similar variables. However, you don’t want to overwrite a variable unless you are
really sure you won’t need the original value later.

The variable Peas had a missing value for the last observation. Because of this, the variables Total
and PerTom, which are calculated from Peas, were also set to missing and this message appeared
in the log:

NOTE: Missing values were generated as a result of performing an operation on
 missing values.

This message is a flag that often indicates an error. However, in this case it is not an error but
simply the result of incomplete data collection.

1

1
 If you want to add only non-missing values, you can use the SUM function discussed in section 10.7.

78 The Little SAS Book

3.2 Using SAS Functions

Sometimes a simple expression, using only arithmetic operators, does not give you the new
value you are looking for. This is where functions are handy, simplifying your task because SAS
has already done the programming for you. All you need to do is plug the right values into the
function and out comes the result—like putting a dollar in a change machine and getting back
four quarters.

SAS has over 400 functions in the following general
areas:

Character Probability
Date and Time Random Number
Financial Sample Statistics
Macro State and ZIP Code
Mathematical

Section 3.3 gives a sample of the most common SAS
functions.

Functions perform a calculation on, or a transformation
of, the arguments given in parentheses following the
function name. SAS functions have the following general
form:

function-name(argument, argument, ...)

All functions must have parentheses even if they don’t
require any arguments. Arguments are separated by
commas and can be variable names, constant values such
as numbers or characters enclosed in quotation marks, or

expressions. The following statement computes Birthday as a SAS date value using the function
MDY and the variables MonthBorn, DayBorn, and YearBorn. The MDY function takes three
arguments, one each for the month, day, and year:

Birthday = MDY(MonthBorn, DayBorn, YearBorn);

Functions can be nested, where one function is the argument of another function. For example,
the following statement calculates NewValue using two nested functions, INT and LOG:

NewValue = INT(LOG(10));

The result for this example is 2, the integer portion of the natural log of the numeric constant 10
(2.3026). Just be careful when nesting functions that each parenthesis has a mate.

Example Data from a pumpkin carving contest illustrate the use of several functions. The
contestants’ names are followed by their age, type of pumpkin (carved or decorated), date of
entry, and the scores from five judges:

CHANGE

$

ARGUMENT

RESULT

FUNCTION

Chapter 3: Working with Your Data 79

Alicia Grossman 13 c 10-28-2003 7.8 6.5 7.2 8.0 7.9
Matthew Lee 9 D 10-30-2003 6.5 5.9 6.8 6.0 8.1
Elizabeth Garcia 10 C 10-29-2003 8.9 7.9 8.5 9.0 8.8
Lori Newcombe 6 D 10-30-2003 6.7 5.6 4.9 5.2 6.1
Jose Martinez 7 d 10-31-2003 8.9 9.510.0 9.7 9.0
Brian Williams 11 C 10-29-2003 7.8 8.4 8.5 7.9 8.0

The following program reads the data, creates two new variables (AvgScore and DayEntered)
and transforms another (Type):

DATA contest;
 INFILE 'c:\MyRawData\Pumpkin.dat';
 INPUT Name $16. Age 3. +1 Type $1. +1 Date MMDDYY10.
 (Scr1 Scr2 Scr3 Scr4 Scr5) (4.1);
 AvgScore = MEAN(Scr1, Scr2, Scr3, Scr4, Scr5);
 DayEntered = DAY(Date);
 Type = UPCASE(Type);
PROC PRINT DATA = contest;
 TITLE 'Pumpkin Carving Contest';
RUN;

The variable AvgScore is created using the MEAN function, which returns the mean of the non-
missing arguments. This differs from simply adding the arguments together and dividing by
their number, which would return a missing value if any of the arguments were missing.

The variable DayEntered is created using the DAY function, which returns the day of the month.
SAS has all sorts of functions for manipulating dates, and what’s great about them is that you
don’t have to worry about things like leap year—SAS takes care of that for you.

The variable Type is transformed using the UPCASE function. SAS is case sensitive when it
comes to variable values; a 'd' is not the same as 'D'. The data file has both lowercase and
uppercase letters for the variable Type, so the function UPCASE is used to make all the values
uppercase.

Here are the results:

 Pumpkin Carving Contest 1

 Avg Day
 Obs Name Age Type Date1 Scr1 Scr2 Scr3 Scr4 Scr5 Score Entered

 1 Alicia Grossman 13 C 16006 7.8 6.5 7.2 8.0 7.9 7.48 28
 2 Matthew Lee 9 D 16008 6.5 5.9 6.8 6.0 8.1 6.66 30
 3 Elizabeth Garcia 10 C 16007 8.9 7.9 8.5 9.0 8.8 8.62 29
 4 Lori Newcombe 6 D 16008 6.7 5.6 4.9 5.2 6.1 5.70 30
 5 Jose Martinez 7 D 16009 8.9 9.5 10.0 9.7 9.0 9.42 31
 6 Brian Williams 11 C 16007 7.8 8.4 8.5 7.9 8.0 8.12 29

1
Notice that these dates are printed as the number of days since January 1, 1960. Section 4.5 discusses how to format these

 values into readable dates.

80 The Little SAS Book

3.3 Selected SAS Functions

The following table lists definitions and syntax of commonly used functions.
1

Function name Syntax2 Definition

Numeric

INT INT(arg) Returns the integer portion of argument

LOG LOG(arg) Natural logarithm

LOG10 LOG10(arg) Logarithm to the base 10

MAX MAX(arg,arg,...) Largest non-missing value

MEAN MEAN(arg,arg,...) Arithmetic mean of non-missing values

MIN MIN(arg,arg,...) Smallest non-missing value

ROUND ROUND(arg, round-off-unit) Rounds to nearest round-off unit

SUM SUM(arg,arg,...) Sum of non-missing values

Character

LEFT LEFT(arg) Left aligns a SAS character expression

LENGTH LENGTH(arg) Returns the length of an argument not counting
trailing blanks (missing values have a length of 1)

SUBSTR SUBSTR(arg,position,n) Extracts a substring from an argument starting
at 'position' for 'n' characters or until end if no 'n'3

TRANSLATE TRANSLATE(source,to-1,
 from-1,...to-n,from-n)

Replaces 'from' characters in 'source' with 'to'
characters (one to one replacement only—you can’t
replace one character with two, for example)

TRIM TRIM(arg) Removes trailing blanks from character expression

UPCASE UPCASE(arg) Converts all letters in argument to uppercase

Date

DATEJUL DATEJUL(julian-date) Converts a Julian date to a SAS date value
4

DAY DAY(date) Returns the day of the month from a SAS date value

MDY MDY(month,day,year) Returns a SAS date value from month, day, and year
values

MONTH MONTH(date) Returns the month (1-12) from a SAS date value

QTR QTR(date) Returns the yearly quarter (1-4) from a SAS date
value

TODAY TODAY() Returns the current date as a SAS date value
1

Check the SAS Help and Documentation for a complete list of functions.
2

arg is short for argument, which means a literal value, variable name, or expression.
3

SUBSTR has a different function when on the left side of an equal sign.
4
A SAS date value is the number of days since January 1, 1960.

Chapter 3: Working with Your Data 81

Here are examples using the selected functions.

Function name Example Result Example Result

Numeric

INT x=INT(4.32); x=4 y=INT(5.789); y=5

LOG x=LOG(1); x=0.0 y=LOG(10); y=2.30259

LOG10 x=LOG10(1); x=0.0 y=LOG10(10); y=1.0

MAX x=MAX(9.3,8,7.5); x=9.3 y=MAX(-3,.,5); y=5

MEAN x=MEAN(1,4,7,2); x=3.5 y=MEAN(2,.,3); y=2.5

MIN x=MIN(9.3,8,7.5); x=7.5 y=MIN(-3,.,5); y=-3

ROUND x=ROUND(12.65); x=13 y=ROUND(12.65,.1); y=12.7

SUM x=SUM(3,5,1); x=9.0 y=SUM(4,7,.); y=11

Character

LEFT a=' cat';
x=LEFT(a);

x='cat ' a=' my cat';
y=LEFT(a);

y='my cat '

LENGTH a='my cat';
x=LENGTH(a);

x=6 a=' my cat ';
y=LENGTH(a);

y=7

SUBSTR a='(916)734-6281';
x=SUBSTR(a,2,3);

x='916' y=SUBSTR('1cat',2); y='cat'

TRANSLATE a='6/16/99';
x=TRANSLATE
(a,'-','/');

x='6-16-99' a='my cat can';
y=TRANSLATE
(a, 'r','c');

y='my rat ran'

TRIM a='my '; b='cat';
x=TRIM(a)||b;5

x='mycat ' a='my cat '; b='s';
y=TRIM(a)||b;

y='my cats '

UPCASE a='MyCat';
x=UPCASE(a);

x='MYCAT' y=UPCASE('Tiger'); y='TIGER'

Date

DATEJUL a=60001;
x=DATEJUL(a);

x=0 a=60365;
y=DATEJUL(a);

y=364

DAY a=MDY(4,18,1999);
x=DAY(a);

x=18 a=MDY(9,3,60);
y=DAY(a);

y=3

MDY x=MDY(1,1,1960); x=0 m=2; d=1; y=60;
Date=MDY(m,d,y);

Date=31

MONTH a=MDY(4,18,1999);
x=MONTH(a);

x=4 a=MDY(9,3,60);
y=MONTH(a);

y=9

QTR a=MDY(4,18,1999);
x=QTR(a);

x=2 a=MDY(9,3,60);
y=QTR(a);

y=3

TODAY x=TODAY(); x=today’s
date

x=TODAY()-1; x=yesterday’s
date

5
The concatenation operator || concatenates character strings.

82 The Little SAS Book

3.4 Using IF-THEN Statements

Frequently, you want an assignment statement to apply to some observations but not all—under
some conditions, but not others. This is called conditional logic, and you do it with IF-THEN
statements:

IF condition THEN action;

The condition is an expression comparing one thing to another, and the action is what SAS should
do when the expression is true, often an assignment statement. For example

IF Model = 'Mustang' THEN Make = 'Ford';

This statement tells SAS to set the variable Make equal to Ford whenever the variable Model
equals Mustang. The terms on either side of the comparison may be constants, variables, or
expressions. Those terms are separated by a comparison operator, which may be either symbolic
or mnemonic. The decision of whether to use symbolic or mnemonic operators depends on your
personal preference and the symbols available on your keyboard. Here are the basic comparison
operators:

Symbolic Mnemonic Meaning
= EQ equals

� =, ^ =, or ~ = NE not equal
> GT greater than
< LT less than
> = GE greater than or equal
< = LE less than or equal

The IN operator also makes comparisons, but it works a bit differently. IN compares the value of
a variable to a list of values. Here is an example:

IF Model IN ('Corvette', 'Camaro') THEN Make = 'Chevrolet';

This statement tells SAS to set the variable Make equal to Chevrolet whenever the value of
Model is Corvette or Camaro.

A single IF-THEN statement can only have one action. If you add the keywords DO and END,
then you can execute more than one action. For example

IF condition THEN DO; IF Model = 'Mustang' THEN DO;
action; Make = 'Ford';
action; Size = 'compact';

END; END;

The DO statement causes all SAS statements coming after it to be treated as a unit until a
matching END statement appears. Together, the DO statement, the END statement, and all the
statements in between are called a DO group.

You can also specify multiple conditions with the keywords AND and OR:

IF condition AND condition THEN action;

Chapter 3: Working with Your Data 83

For example

IF Model = 'Mustang' AND Year < 1975 THEN Status = 'classic';

Like the comparison operators, AND and OR may be symbolic or mnemonic:

Symbolic Mnemonic Meaning
& AND all comparisons must be true
|, , or ! OR only one comparison must be true

Be careful with long strings of comparisons; they can be a logical maze.

Example The following data about used cars contain values for model, year, make, number of
seats, and color:

Corvette 1955 . 2 black
XJ6 1995 Jaguar 2 teal
Mustang 1966 Ford 4 red
Miata 2002 . . silver
CRX 2001 Honda 2 black
Camaro 2000 . 4 red

This program reads the data from a file called Cars.dat, uses a series of IF-THEN statements to fill
in missing data, and creates a new variable, Status:

DATA sportscars;
 INFILE 'c:\MyRawData\Cars.dat';
 INPUT Model $ Year Make $ Seats Color $;
 IF Year < 1975 THEN Status = 'classic';
 IF Model = 'Corvette' OR Model = 'Camaro' THEN Make = 'Chevy';
 IF Model = 'Miata' THEN DO;
 Make = 'Mazda';
 Seats = 2;
 END;
PROC PRINT DATA = sportscars;
 TITLE “Eddy’s Excellent Emporium of Used Sports Cars”;
RUN;

This program contains three IF-THEN statements. The first is a simple IF-THEN that creates the
new variable Status based on the value of Year. That is followed by a compound IF-THEN using an
OR. The last IF-THEN uses DO and END. The output looks like this:

 Eddy’s Excellent Emporium of Used Sports Cars 1

 Obs Model Year Make Seats Color Status

 1 Corvette 1955 Chevy 2 black classic
 2 XJ6 1995 Jaguar 2 teal
 3 Mustang 1966 Ford 4 red classic
 4 Miata 2002 Mazda 2 silver
 5 CRX 2001 Honda 2 black
 6 Camaro 2000 Chevy 4 red

84 The Little SAS Book

3.5 Grouping Observations with IF-THEN/ELSE Statements

One of the most common uses of IF-THEN statements is
for grouping observations. Perhaps a variable has too
many different values and you want to print a more
compact report, or perhaps you are going to run an
analysis based on specific groups of interest. There are
many possible reasons for grouping data, so sooner or
later you’ll probably need to do it.

The simplest and most common way to create a grouping variable is with a series of IF-THEN
statements.

1
 By adding the keyword ELSE to your IF statements, you can tell SAS that these

statements are related.

IF-THEN/ELSE logic takes this basic form:

IF condition THEN action;
 ELSE IF condition THEN action;
 ELSE IF condition THEN action;

Notice that the ELSE statement is simply an IF-THEN statement with an ELSE tacked onto the
front. You can have any number of these statements.

IF-THEN/ELSE logic has two advantages when compared to a simple series of IF-THEN
statements without any ELSE statements. First, it is more efficient, using less computer time;
once an observation satisfies a condition, SAS skips the rest of the series. Second, ELSE logic
ensures that your groups are mutually exclusive so you don’t accidentally have an observation
fitting into more than one group.

Sometimes the last ELSE statement in a series is a little different, containing just an action, with
no IF or THEN. Note the final ELSE statement in this series:

IF condition THEN action;
 ELSE IF condition THEN action;
 ELSE action;

An ELSE of this kind becomes a default which is automatically executed for all observations
failing to satisfy any of the previous IF statements. You can only have one of these statements,
and it must be the last in the IF-THEN/ELSE series.

Example Here are data from a survey of home improvements. Each record contains three data
values: owner’s name, description of the work done, and cost of the improvements in dollars:

Bob kitchen cabinet face-lift 1253.00
Shirley bathroom addition 11350.70
Silvia paint exterior .
Al backyard gazebo 3098.63
Norm paint interior 647.77
Kathy second floor addition 75362.93

1
Other ways to create grouping variables include using a SELECT statement, or using a PUT function with a user-defined

 format from PROC FORMAT.

red

orange

yellow

green

blue

purple

red warm

orange warm

yellow warm

green cool

blue cool

purple cool

Chapter 3: Working with Your Data 85

This program reads the raw data from a file called Home.dat and then assigns a grouping variable
called CostGroup. This variable has a value of high, medium, low, or missing, depending on the
value of Cost:

* Group observations by cost;
DATA homeimprovements;
 INFILE 'c:\MyRawData\Home.dat';
 INPUT Owner $ 1-7 Description $ 9-33 Cost;
 IF Cost = . THEN CostGroup = 'missing';
 ELSE IF Cost < 2000 THEN CostGroup = 'low';
 ELSE IF Cost < 10000 THEN CostGroup = 'medium';
 ELSE CostGroup = 'high';
PROC PRINT DATA = homeimprovements;
 TITLE 'Home Improvement Cost Groups';
RUN;

Notice that there are four statements in this IF-THEN/ELSE series, one for each possible value of
the variable CostGroup. The first statement deals with observations that have missing data for the
variable Cost. Without this first statement, observations with a missing value for Cost would be
incorrectly assigned a CostGroup of low. SAS considers missing values to be smaller than non-
missing values, smaller than any printable character for character variables, and smaller than
negative numbers for numeric variables. Unless you are sure that your data contain no missing
values, you should allow for missing values when you write IF-THEN/ELSE statements.

The results look like this:

 Home Improvement Cost Groups 1

 Cost
 Obs Owner Description Cost Group

 1 Bob kitchen cabinet face-lift 1253.00 low
 2 Shirley bathroom addition 11350.70 high
 3 Silvia paint exterior . missing
 4 Al backyard gazebo 3098.63 medium
 5 Norm paint interior 647.77 low
 6 Kathy second floor addition 75362.93 high

86 The Little SAS Book

3.6 Subsetting Your Data

Often programmers find that they want to use some of the obser-
vations in a data set and exclude the rest. The most common way to
do this is with a subsetting IF statement in a DATA step.

1
 The basic

form of a subsetting IF is

IF expression;

Consider this example:

IF Sex = 'f';

At first subsetting IF statements may seem odd. People naturally ask, “IF Sex = ‘f’, then what?”
The subsetting IF looks incomplete, as if a careless typist pressed the delete key too long. But
it is really a special case of the standard IF-THEN statement. In this case the action is merely
implied. If the expression is true, then SAS continues with the DATA step. If the expression is
false, then no further statements are processed for that observation; that observation is not added
to the data set being created; and SAS moves on to the next observation. You can think of the
subsetting IF as a kind of on-off switch. If the condition is true, then the switch is on and the
observation is processed. If the condition is false, then that observation is turned off.

If you don’t like subsetting IFs, there is another alternative, the DELETE statement. DELETE
statements do the opposite of subsetting IFs. While the subsetting IF statement tells SAS which
observations to include, the DELETE statement tells SAS which observations to exclude:

IF expression THEN DELETE;

The following two statements are equivalent (assuming there are only two values for the variable
Sex, and no missing data):

IF Sex = 'f'; IF Sex = 'm' THEN DELETE;

Example The members of a local amateur playhouse want to choose a Shakespearean comedy

for this spring’s play. You volunteer to compile a list of titles using an online encyclopedia. For
each play your data file contains title, approximate year of first performance, and type of play:

A Midsummer Night’s Dream 1595 comedy
Comedy of Errors 1590 comedy
Hamlet 1600 tragedy
Macbeth 1606 tragedy
Richard III 1594 history
Romeo and Juliet 1596 tragedy
Taming of the Shrew 1593 comedy
Tempest 1611 romance

1
 Other ways to subset data include using multiple INPUT statements (discussed in section 2.13), and the WHERE statement

 (discussed in section 4.2 and appendix F).

A
A
A

A
A
B
A
B

Chapter 3: Working with Your Data 87

This program reads the data from a raw data file called Shakespeare.dat and then uses a subsetting
IF statement to select only comedies:

* Choose only comedies;
DATA comedy;
 INFILE 'c:\MyRawData\Shakespeare.dat';
 INPUT Title $ 1-26 Year Type $;
 IF Type = 'comedy';
PROC PRINT DATA = comedy;
 TITLE 'Shakespearean Comedies';
RUN;

The output looks like this:

 Shakespearean Comedies 1

 Obs Title Year Type

 1 A Midsummer Night’s Dream 1595 comedy
 2 Comedy of Errors 1590 comedy
 3 Taming of the Shrew 1593 comedy

These notes appear in the log stating that although eight records were read from the input file, the
data set WORK.COMEDY contains only three observations:

NOTE: 8 records were read from the infile 'c:\MyRawData\Shakespeare.dat'

NOTE: The data set WORK.COMEDY has 3 observations and 3 variables.

It is always a good idea to check the SAS log when you subset observations to make sure that you
ended up with what you expected.

In the program above, you could substitute the statement

IF Type = 'tragedy' OR Type = 'romance' OR Type = 'history' THEN DELETE;

for the statement

IF Type = 'comedy';

But you would have to do a lot more typing. Generally, you use the subsetting IF when it is easier
to specify a condition for including observations, and use the DELETE statement when is easier to
specify a condition for excluding observations.

88 The Little SAS Book

3.7 Working with SAS Dates

Dates can be tricky to work with. Some months have 30 days, some 31, some 28, and don’t forget
leap year. SAS dates simplify all this. A SAS date is a numeric value equal to the number of days
since January 1, 1960.

1
 The table below lists four dates and their values as SAS dates:

Date SAS date value
January 1, 1959 -365
January 1, 1960 0
January 1, 1961 366
January 1, 2003 15706

SAS has special tools for working with dates: informats for reading dates, functions for manip-
ulating dates, and formats for printing dates.

2
 A table of selected date informats, formats, and

functions appears in section 3.8.

Informats To read variables that are dates, you use formatted style input. The INPUT
statement below tells SAS to read a variable named BirthDate using the MMDDYY10. informat:

INPUT BirthDate MMDDYY10.;

SAS has a variety of date informats for reading dates in many different forms. All of these
informats convert your data to a number equal to the number of days since January 1, 1960.

3

Setting the default century When SAS sees a date with a two-digit year like 07/04/76,
SAS has to decide in which century the year belongs. Is the year 1976, 2076, or perhaps 1776? The
system option YEARCUTOFF= specifies the first year of a hundred-year span for SAS to use. The
default value for this option is 1920, but you can change this value with the OPTIONS statement.
To avoid problems, you may want to specify the YEARCUTOFF= option whenever you have
data containing two-digit years. This statement tells SAS to interpret two-digit dates as occurring
between 1950 and 2049:

OPTIONS YEARCUTOFF = 1950;

Dates in SAS expressions Once a variable has been read with a SAS date informat, it can be
used in arithmetic expressions like other numeric variables. For example, if a library book is due in
three weeks, you could find the due date by adding 21 days to the date it was checked out:

DateDue = DateCheck + 21;

You can use a date as a constant in a SAS expression by adding quotation marks and a letter D.
The assignment statement below creates a variable named EarthDay05, which is equal to the SAS
date value for April 22, 2005:

EarthDay05 = '22APR2005'D;

1
 We don’t know why this date was chosen, but since SAS dates are relative, January 1, 1960, is as good as any other date.

2
SAS also has informats, functions, and formats for working with time values (the number of seconds since midnight), and

 datetime values (the number of seconds since midnight, you guessed it, January 1, 1960).

3
 For more information about informats, see section 2.7; for functions, see section 3.2; and for formats, see section 4.5.

Chapter 3: Working with Your Data 89

Functions SAS date functions perform a number of handy operations. For example, the
TODAY function returns a SAS date value equal to today’s date. This statement

DaysOverDue = TODAY() - DateDue;

subtracts the date a book was due from today’s date to compute the number of days a book is
overdue.

Formats If you print a SAS date value, SAS will by default print the actual value—the number
of days since January 1, 1960. Since this is not very meaningful to most people, SAS has a variety
of formats for printing dates in different forms. The FORMAT statement below tells SAS to print
the variable BirthDate using the WEEKDATE17. format:

FORMAT BirthDate WEEKDATE17.;

Example A local library has a data file containing details about library cards. Each record
contains three data values—the card holder’s name, birthdate, and the date that card was issued:

A. Jones 1jan60 9-15-03
M. Rincon 05OCT1949 02-29-2000
Z. Grandage 18mar1988 10-10-2002
K. Kaminaka 29may2001 01-24-2003

The program below reads the raw data, and then computes the variable ExpireDate (for expiration
date) by adding three years to the variable IssueDate. The variable ExpireQuarter (the quarter the
card expires) is computed using the QTR function and the variable ExpireDate. Then an IF
statement uses a date constant to identify cards issued after January 1, 2003:

DATA librarycards;
 INFILE 'c:\MyRawData\Dates.dat' TRUNCOVER;
 INPUT Name $11. +1 BirthDate DATE9. +1 IssueDate MMDDYY10.;
 ExpireDate = IssueDate + (365.25 * 3);
 ExpireQuarter = QTR(ExpireDate);
 IF IssueDate > '01JAN2003'D THEN NewCard = 'yes';
PROC PRINT DATA = librarycards;
 FORMAT IssueDate MMDDYY8. ExpireDate WEEKDATE17.;
 TITLE 'SAS Dates without and with Formats';
RUN;

Here is the output from PROC PRINT. Notice that the variable BirthDate is printed without a
date format, while IssueDate and ExpireDate use formats:

 SAS Dates without and with Formats 1

 Birth Issue Expire New
 Obs Name Date Date ExpireDate Quarter Card

 1 A. Jones 0 09/15/03 Thu, Sep 14, 2006 3 yes
 2 M. Rincon -3740 02/29/00 Fri, Feb 28, 2003 1
 3 Z. Grandage 10304 10/10/02 Sun, Oct 9, 2005 4
 4 K. Kaminaka 15124 01/24/03 Mon, Jan 23, 2006 1 yes

90 The Little SAS Book

3.8 Selected Date Informats, Functions, and Formats

Here are definitions for some of the most commonly used date informats, functions, and formats.
1

Informats Definition Width range Default width

DATEw. Reads dates in form: ddmmmyy or ddmmmyyyy 7-32 7

DDMMYYw. Reads dates in form: ddmmyy or ddmmyyyy 6-32 6

JULIANw. Reads Julian dates in form: yyddd or yyyyddd 5-32 5

MMDDYYw. Reads dates in form: mmddyy or mmddyyyy 6-32 6

Functions Syntax Definition

DATEJUL DATEJUL(julian-date) Converts a Julian date to a SAS date value
2

DAY DAY(date) Returns the day of the month from a SAS date value

MDY MDY(month,day,year) Returns a SAS date value from month, day, and
 year values

MONTH MONTH(date) Returns the month (1-12) from a SAS date value

QTR QTR(date) Returns the yearly quarter (1-4) from a SAS date
 value

TODAY TODAY() Returns the current date as a SAS date value

Formats Definition Width range Default width

DATEw. Writes SAS date values in form: ddmmmyy 5-9 7

DAYw. Writes the day of the month from a SAS date value 2-32 2

EURDFDDw. Writes SAS date values in form: dd.mm.yy 2-10 8

JULIANw. Writes a Julian date from a SAS date value 5-7 5

MMDDYYw. Writes SAS date values in form: mmddyy or mmddyyyy 2-10 8

WEEKDATEw. Writes SAS date values in form:
day-of-week, month-name dd, yy or yyyy

3-37 29

WORDDATEw. Writes SAS date values in form: month-name dd, yyyy 3-32 18

1
For a complete list see the SAS Help and Documentation.

2
A SAS date value is the number of days since January 1, 1960.

Chapter 3: Working with Your Data 91

Here are examples using the selected date informats, functions, and formats.

Informats Input data INPUT statement Results

DATEw. 1jan1961 INPUT Day DATE10.; 366

DDMMYYw. 01.01.61
02/01/61

INPUT Day DDMMYY8.; 366
367

JULIANw. 61001 INPUT Day JULIAN7.; 366

MMDDYYw. 01-01-61 INPUT Day MMDDYY8.; 366

Functions Example Result Example Results

DATEJUL a=60001; x=0 a=60365; y=364
x=DATEJUL(a); y=DATEJUL(a);

DAY a=MDY(4,18,99); x=18 a=MDY(9,3,60); y=3
x=DAY(a); y=DAY(a);

MDY x=MDY(1,1,60); x=0 m=2; d=1; y=60;
Date=MDY(m,d,y);

Date=31

MONTH a=MDY(4,18,1999)
;x=MONTH(a);

x=4 a=MDY(9,3,60);
y=MONTH(a);

y=9

QTR a=MDY(4,18,99);
x=QTR(a);

x=2 a=MDY(9,3,60);
y=QTR(a);

y=3

TODAY x=TODAY(); x=today’s date x=TODAY()-1; x=yesterday’s
date

Formats Input data PUT statement3 Results

DATEw. 8966 PUT Birth DATE7.;
PUT Birth DATE9.;

19JUL84
19JUL1984

DAYw. 8966 PUT Birth DAY2.;
PUT Birth DAY7.;

19
19

EURDFDDw. 8966 PUT Birth EURDFDD8.
PUT Birth EURDFDD10.;

19.07.84
19.07.1984

JULIANw. 8966 PUT Birth JULIAN5.;
PUT Birth JULIAN7.;

84201
1984201

MMDDYYw. 8966 PUT Birth MMDDYY8.;
PUT Birth MMDDYY6.;

07/19/84
071984

WEEKDATEw. 8966 PUT Birth WEEKDATE15.;
PUT Birth WEEKDATE29.;

Thu, Jul 19, 84
Thursday, July 19, 1984

WORDDATEw. 8966 PUT Birth WORDDATE12.;
PUT Birth WORDDATE18.;

Jul 19, 1984
July 19, 1984

3
Formats can be used in PUT statements and PUT functions in DATA steps, and in FORMAT statements in either DATA or

 PROC steps.

92 The Little SAS Book

3.9 Using the RETAIN and Sum Statements

When reading raw data, SAS sets the values of all variables equal to missing at the start of each
iteration of the DATA step. These values may be changed by INPUT or assignment statements, but
they are set back to missing again when SAS returns to the top of the DATA step to process the next
observation. RETAIN and sum statements change this. If a variable appears in a RETAIN statement,
then its value will be retained from one iteration of the DATA step to the next. A sum statement also
retains values from the previous iteration of the DATA step, but then adds to it the value of an
expression.

RETAIN statement Use the RETAIN statement when you want SAS to preserve a variable’s
value from the previous iteration of the DATA step. The RETAIN statement can appear anywhere
in the DATA step and has the following form, where all variables to be retained are listed after
the RETAIN keyword:

RETAIN variable-list;

You can also specify an initial value, instead of missing, for the variables. All variables listed
before an initial value will start the first iteration of the DATA step with that value:

RETAIN variable-list initial-value;

Sum statement A sum statement also retains values from the previous iteration of the DATA
step, but you use it for the special cases where you simply want to cumulatively add the value of
an expression to a variable. A sum statement, like an assignment statement, contains no
keywords. It has the following form:

variable + expression;

No, there is no typo here and no equal sign either. This statement adds the value of the
expression to the variable while retaining the variable’s value from one iteration of the DATA
step to the next. The variable must be numeric and has the initial value of zero. This statement
can be re-written using the RETAIN statement and SUM function as follows:

RETAIN variable 0;
variable = SUM(variable, expression);

As you can see, a sum statement is really a special case of using RETAIN.

Example This example illustrates the use of both the RETAIN and sum statements. The minor
league baseball team, the Walla Walla Sweets, has the following data about their games. The date the
game was played and the team played are followed by the number of hits and runs for the game:

6-19 Columbia Peaches 8 3
6-20 Columbia Peaches 10 5
6-23 Plains Peanuts 3 4
6-24 Plains Peanuts 7 2
6-25 Plains Peanuts 12 8
6-30 Gilroy Garlics 4 4
7-1 Gilroy Garlics 9 4
7-4 Sacramento Tomatoes 15 9
7-4 Sacramento Tomatoes 10 10
7-5 Sacramento Tomatoes 2 3

Chapter 3: Working with Your Data 93

The team wants two additional variables in their data set. One shows the cumulative number of
runs for the season, and the other shows the maximum number of runs in a game to date. The
following program uses a sum statement to compute the cumulative number of runs, and the
RETAIN statement and MAX function to determine the maximum number of runs in a game to
date:

* Using RETAIN and sum statements to find most runs and total runs;
DATA gamestats;
 INFILE 'c:\MyRawData\Games.dat';
 INPUT Month 1 Day 3-4 Team $ 6-25 Hits 27-28 Runs 30-31;
 RETAIN MaxRuns;
 MaxRuns = MAX(MaxRuns, Runs);
 RunsToDate + Runs;
PROC PRINT DATA = gamestats;
 TITLE "Season's Record to Date";
RUN;

The variable MaxRuns is set equal to the maximum of its value from the previous iteration of the
DATA step (since it appears in the RETAIN statement) or the value of the variable Runs. The
variable RunsToDate adds the number of runs per game, Runs, to itself while retaining its value
from one iteration of the DATA step to the next. This produces a cumulative record of the number
of runs.

Here are the results:

 Season's Record to Date 1

 Max Runs
 Obs Month Day Team Hits Runs Runs ToDate

 1 6 19 Columbia Peaches 8 3 3 3
 2 6 20 Columbia Peaches 10 5 5 8
 3 6 23 Plains Peanuts 3 4 5 12
 4 6 24 Plains Peanuts 7 2 5 14
 5 6 25 Plains Peanuts 12 8 8 22
 6 6 30 Gilroy Garlics 4 4 8 26
 7 7 1 Gilroy Garlics 9 4 8 30
 8 7 4 Sacramento Tomatoes 15 9 9 39
 9 7 4 Sacramento Tomatoes 10 10 10 49
 10 7 5 Sacramento Tomatoes 2 3 10 52

94 The Little SAS Book

3.10 Simplifying Programs with Arrays

Sometimes you want to do the same thing to many variables. You may want to take the log of
every numeric variable or change every occurrence of zero to a missing value. You could write a
series of assignment statements or IF statements, but if you have a lot of variables to transform,
using arrays will simplify and shorten your program.

An array is an ordered group of similar items. You might think your local mall has a nice array
of stores to choose from. In SAS, an array is a group of variables. You can define an array to be
any group of variables you like, as long as they are either all numeric or all character. The
variables can be ones that already exist in your data set, or they can be new variables that you
want to create.

Arrays are defined using the ARRAY statement in the DATA step. The ARRAY statement has
the following general form:

ARRAY name (n) $ variable-list;

In this statement, name is a name you give to the array, and n is the number of variables in the
array. Following the (n) is a list of variable names. The number of variables in the list must equal
the number given in parentheses. (You may use {} or [] instead of parentheses if you like.) This is
called an explicit array, where you explicitly state the number of variables in the array. The $ is
needed if the variables are character and is only necessary if the variables have not previously
been defined.

The array itself is not stored with the data set; it is defined only for the duration of the DATA
step. You can give the array any name, as long as it does not match any of the variable names
in your data set or any SAS keywords. The rules for naming arrays are the same as those for
naming variables (must be 32 characters or fewer and start with a letter or underscore followed
by letters, numerals, or underscores).

To reference a variable using the array name, give the array name and the subscript for that
variable. The first variable in the variable list has subscript 1, the second has subscript 2, and
so forth. So if you have an array defined as

ARRAY store (4) Macys Penneys Sears Target;

STORE(1) is the variable Macys, STORE(2) is the variable Penneys, STORE(3) is the variable
Sears, and STORE(4) is the variable Target. This is all just fine, but simply defining an array
doesn’t do anything for you. You want to be able to use the array to make things easier for you.

Example The radio station WBRK is conducting a survey asking people to rate ten different
songs. Songs are rated on a scale of 1 to 5, where 1 = change the station when it comes on, and
5 = turn up the volume when it comes on. If listeners had not heard the song or didn’t care to
comment on it, a 9 was entered for that song. The following are the data collected:

Albany 54 4 3 5 9 9 2 1 4 4 9
Richmond 33 5 2 4 3 9 2 9 3 3 3
Oakland 27 1 3 2 9 9 9 3 4 2 3
Richmond 41 4 3 5 5 5 2 9 4 5 5
Berkeley 18 3 4 9 1 4 9 3 9 3 2

Chapter 3: Working with Your Data 95

The listener’s city of residence, age, and their responses to all ten songs are listed. The following
program changes all the 9s to missing values. (The variables are named using the first letters of the
words in the song’s title.)

* Change all 9s to missing values;
DATA songs;
 INFILE 'c:\MyRawData\WBRK.dat';
 INPUT City $ 1-15 Age domk wj hwow simbh kt aomm libm tr filp ttr;
 ARRAY song (10) domk wj hwow simbh kt aomm libm tr filp ttr;
 DO i = 1 TO 10;
 IF song(i) = 9 THEN song(i) = .;
 END;
PROC PRINT DATA = songs;
 TITLE 'WBRK Song Survey';
RUN;

An array, SONG, is defined as having ten variables, the same ten variables that appear in the
INPUT statement representing the ten songs. Next comes an iterative DO statement. All statements
between the DO statement and the END statement are executed, in this case, ten times, once for
each variable in the array.

The variable I is used as an index variable and is incremented by 1 each time through the DO loop.
The first time through the DO loop, the variable I has a value of 1 and the IF statement would read
IF song(1)=9 THEN song(1)=.;, which is the same as IF domk=9 THEN domk=.;. The
second time through, I has a value of 2 and the IF statement would read IF song(2)=9 THEN
song(2)=.;, which is the same as IF wj=9 THEN wj=.;. This continues through all 10
variables in the array.

Here are the results:

 WBRK Song Survey 1

 Obs City Age domk wj hwow simbh kt aomm libm tr filp ttr i

 1 Albany 54 4 3 5 . . 2 1 4 4 . 11
 2 Richmond 33 5 2 4 3 . 2 . 3 3 3 11
 3 Oakland 27 1 3 2 . . . 3 4 2 3 11
 4 Richmond 41 4 3 5 5 5 2 . 4 5 5 11
 5 Berkeley 18 3 4 . 1 4 . 3 . 3 2 11

Notice that the array members SONG(1) to SONG(10) did not become part of the data set, but the
variable I did. You could have written ten IF statements instead of using arrays and accomplished
the same result. In this program it would not have made a big difference, but if you had 100 songs
in your survey instead of ten, then using arrays would clearly be a better solution.

96 The Little SAS Book

3.11 Using Shortcuts for Lists of Variable Names

As the title states, this section is about shortcuts, shorthand ways of writing lists of variable names.
While writing SAS programs, you will often need to write a list of variable names. When defining
ARRAYS, using functions like MEAN or SUM, or using SAS procedures, you must specify which
variables to use. Now, if you only have a handful of variables, you might not feel a need for a
shortcut. But if, for example, you need to define an array with 100 elements, you might be a little
grumpy after typing in the 49th variable name knowing you still have 51 more to go. You might
even think, “There must be an easier way.” Well, there is.

You can use an abbreviated list of variable names anywhere you can use a regular variable list. In
functions, abbreviated lists must be preceded by the keyword OF (for example, SUM(OF Cat8 -
Cat12)). Otherwise, you simply replace the regular list of variables with the abbreviated one.

Numbered range lists Variables which start with the same characters and end with
consecutive numbers can be part of a numbered range list. The numbers can start and end
anywhere as long as the number sequence between is complete. For example, the following INPUT
statement shows a variable list and its abbreviated form:

Variable list Abbreviated list

INPUT Cat8 Cat9 Cat10 Cat11 Cat12; INPUT Cat8 - Cat12;

Name range lists Name range lists depend on the internal order, or position, of the variables
in the SAS data set. This is determined by the order of appearance of the variables in the DATA
step. For example, if you had the following DATA step, then the internal variable order would be
Y A C H R B:

DATA example;
 INPUT y a c h r;
 b = c + r;
RUN;

To specify a name range list, put the first variable, then two hyphens, then the last variable. The
following PUT statements show the variable list and its abbreviated form using a named range:

Variable list Abbreviated list

PUT y a c h r b; PUT y -- b;

If you are not sure of the internal order, you can find out using PROC CONTENTS with the
POSITION option. The following program will list the variables in the permanent SAS data set
DISTANCE sorted by position:

LIBNAME mydir 'c:\MySASLib';
PROC CONTENTS DATA = mydir.distance POSITION;
RUN;

Use caution when including name range lists in your programs. Although they can save on typing,
they may also make your programs more difficult to understand and debug.

Special SAS name lists The special name lists, _ALL_, _CHARACTER_, and _NUMERIC_
can also be used any place you want either all the variables, all the character variables, or all the

Chapter 3: Working with Your Data 97

numeric variables in a SAS data set. These name lists are useful when you want to do something
like compute the mean of all the numeric variables for an observation (MEAN(OF _NUMERIC_)),
or list the values of all variables in an observation (PUT _ALL_;).

Example The radio station WBRK wants to modify the program from the previous section,
which changes all 9s to missing values. Now, instead of changing the original variables, they use
the following program to create new variables (Song1 through Song10) which will have the new
missing values. This program also computes the average score using the MEAN function.

DATA songs;
 INFILE 'c:\MyRawData\WBRK.dat';
 INPUT City $ 1-15 Age domk wj hwow simbh kt aomm libm tr filp ttr;
 ARRAY new (10) Song1 - Song10;
 ARRAY old (10) domk -- ttr;
 DO i = 1 TO 10;
 IF old(i) = 9 THEN new(i) = .;
 ELSE new(i) = old(i);
 END;
 AvgScore = MEAN(OF Song1 - Song10);
PROC PRINT DATA = songs;
 TITLE 'WBRK Song Survey';
RUN;

Note that both ARRAY statements use abbreviated variable lists; array NEW uses a numbered
range list and array OLD uses a name range list. Inside the iterative DO loop, the Song variables
(array NEW) are set equal to missing if the original variable (array OLD) had a value of 9. Other-
wise, they are set equal to the original values. After the DO loop, a new variable, AvgScore, is
created using an abbreviated variable list in the function MEAN. The output includes variables
from both the OLD array (domk, wj, ... ttr) and NEW array (Song1 - Song10):

 WBRK Song Survey 1

 A
 v
 S g
 s S S S S S S S S S o S
 C d h i a l f o o o o o o o o o n c
 O i A o w m o i i t n n n n n n n n n g o
 b t g m w o b k m b t l t g g g g g g g g g 1 r
 s y e k j w h t m m r p r 1 2 3 4 5 6 7 8 9 0 i e

 1 Albany 54 4 3 5 9 9 2 1 4 4 9 4 3 5 . . 2 1 4 4 . 11 3.28571
 2 Richmond 33 5 2 4 3 9 2 9 3 3 3 5 2 4 3 . 2 . 3 3 3 11 3.12500
 3 Oakland 27 1 3 2 9 9 9 3 4 2 3 1 3 2 . . . 3 4 2 3 11 2.57143
 4 Richmond 41 4 3 5 5 5 2 9 4 5 5 4 3 5 5 5 2 . 4 5 5 11 4.22222
 5 Berkeley 18 3 4 9 1 4 9 3 9 3 2 3 4 . 1 4 . 3 . 3 2 11 2.85714

4

From the SAS L Listserve, 1994. Reprinted by permission of the author.

‘‘ ’’
Once in a while the simple

things work right off.

PHIL GALLAGHER

CHAPTER 4

Sorting, Printing, and Summarizing
Your Data

4.1 Using SAS Procedures 100

4.2 Subsetting in Procedures with the WHERE Statement 102

4.3 Sorting Your Data with PROC SORT 104

4.4 Printing Your Data with PROC PRINT 106

4.5 Changing the Appearance of Printed Values with Formats 108

4.6 Selected Standard Formats 110

4.7 Creating Your Own Formats Using PROC FORMAT 112

4.8 Writing Simple Custom Reports 114

4.9 Summarizing Your Data Using PROC MEANS 116

4.10 Writing Summary Statistics to a SAS Data Set 118

4.11 Counting Your Data with PROC FREQ 120

4.12 Producing Tabular Reports with PROC TABULATE 122

4.13 Adding Statistics to PROC TABULATE Output 124

4.14 Enhancing the Appearance of PROC TABULATE Output 126

4.15 Changing Headers in PROC TABULATE Output 128

4.16 Specifying Multiple Formats for Data Cells in PROC TABULATE Output 130

4.17 Producing Simple Output with PROC REPORT 132

4.18 Using DEFINE Statements in PROC REPORT 134

4.19 Creating Summary Reports with PROC REPORT 136

4.20 Adding Summary Breaks to PROC REPORT Output 138

4.21 Adding Statistics to PROC REPORT Output 140

100 The Little SAS Book

4.1 Using SAS Procedures

Using a procedure, or PROC, is like filling out a form. Someone else designed the form, and all
you have to do is fill in the blanks and choose from a list of options. Each PROC has its own

unique form with its own list of options. But while each procedure
is unique, there are similarities too. This section discusses some of
those similarities.

All procedures have required statements, and most have optional
statements. PROC PRINT, for example, requires only two words:

PROC PRINT;

However, by adding optional statements you could make this
procedure a dozen lines or even longer.

PROC statement All procedures start with the keyword PROC followed by the name of the
procedure, such as PRINT or CONTENTS. Options, if there are any, follow the procedure name.
The DATA= option tells SAS which data set to use as input for that procedure. In this case, SAS
will use a temporary SAS data set named BANANA:

PROC CONTENTS DATA = banana;

The DATA= option is, of course, optional. If you skip it, then SAS will use the most recently
created data set, which is not necessarily the same as the most recently used. Sometimes it is
easier to specify the data set you want than to figure out which data set SAS will use by default.
To use a permanent SAS data set, issue a LIBNAME statement to set up a libref pointing to the
location of your data set, and put the data set’s two-level name in the DATA= option, as
discussed in section 2.20,

LIBNAME tropical 'c:\MySASLib';
PROC CONTENTS DATA = tropical.banana;

or refer to it directly by placing your operating environment’s name for the permanent SAS data
set between quotation marks, as discussed in section 2.21.

PROC CONTENTS DATA = 'c:\MySASLib\banana';

BY statement The BY statement is required for only one procedure, PROC SORT. In PROC
SORT the BY statement tells SAS how to arrange the observations. In all other procedures, the BY
statement is optional, and tells SAS to perform a separate analysis for each combination of values
of the BY variables rather than treating all observations as one group. For example, this statement
tells SAS to run a separate analysis for each state:

BY State;

All procedures, except PROC SORT, assume that your data are already sorted by the variables in
your BY statement. If your observations are not already sorted, then use PROC SORT to do the job.

TITLE and FOOTNOTE statements You have seen TITLE statements many times in
this book. FOOTNOTE works the same way, but prints at the bottom of the page. These global
statements are not technically part of any step. You can put them anywhere in your program, but
since they apply to the procedure output it generally makes sense to put them with the procedure.

Chapter 4: Sorting, Printing, and Summarizing Your Data 101

The most basic TITLE statement consists of the keyword TITLE followed by your title enclosed in
quotation marks. SAS doesn’t care if the two quotation marks are single or double as long as they
are the same:

TITLE 'This is a title';

If you find that your title contains an apostrophe, use double quotation marks around the title, or
replace the single apostrophe with two:

TITLE ”Here’s another title”;
TITLE ’Here’’s another title’;

You can specify up to ten titles or footnotes by adding numbers to the keywords TITLE and
FOOTNOTE:

FOOTNOTE3 ’This is the third footnote’;

Titles and footnotes stay in effect until you replace them with new ones or cancel them with a null
statement. The following null statement would cancel all current titles:

TITLE;

When you specify a new title or footnote, it replaces the old title or footnote with the same number
and cancels those with a higher number. For example, a new TITLE2 cancels an existing TITLE3, if
there is one.

LABEL statement By default, SAS uses variable names to label your output, but with the
LABEL statement you can create more descriptive labels, up to 256 characters long, for each
variable. This statement creates labels for the variables ReceiveDate and ShipDate:

LABEL ReceiveDate = ’Date order was received’
 ShipDate = ’Date merchandise was shipped’;

When a LABEL statement is used in a DATA step, the labels become part of the data set; but when
used in a PROC, the labels stay in effect only for the duration of that step.

Customizing output You have a lot of control over the output produced by procedures.
Using system options, you can set many features such as centering, dates, line size, and page size
(section 1.13). With the Output Delivery System, you can you can also change the overall style of
your output, produce output in different formats (such as HTML or RTF), or change almost any
detail of your output (section 1.10 and chapter 5).

Output data sets Most procedures produce some kind of report, but sometimes you would
like the results of the procedure saved as a SAS data set so you can perform further analysis. You
can create SAS data sets from any procedure output using the ODS OUTPUT statement (section
5.3). Some procedures can also write a SAS data set using an OUTPUT statement or OUT= option.

102 The Little SAS Book

4.2 Subsetting in Procedures with the WHERE Statement

One optional statement for any PROC that reads a SAS
data set is the WHERE statement. The WHERE statement tells
a procedure to use a subset of the data. There are other ways to
subset data, as you probably remember, so you could get by
without ever using the WHERE statement.

1
 However, the

WHERE statement is a shortcut. While the other methods of
subsetting work only in DATA steps, the WHERE statement
works in PROC steps too.

Unlike subsetting in a DATA step, using a WHERE statement in a procedure does not create a
new data set. That is one of the reasons why WHERE statements are sometimes more efficient
than other ways of subsetting.

The basic form of a WHERE statement is

WHERE condition;

Only observations satisfying the condition will be used by the PROC. This may look familiar
since it is similar to a subsetting IF. The left side of that condition is a variable name, and the
right side is a variable name, a constant, or a mathematical expression. Mathematical expressions
can contain the standard arithmetic symbols for addition (+), subtraction (-), multiplication (*),
division (/), and exponentiation (**). Between the two sides of the expression, you can use
comparison and logical operators; those operators may be symbolic or mnemonic. Here are the
most frequently used operators:

 Symbolic Mnemonic Example
 = EQ WHERE Region = 'Spain';

�=, ~=, ^= NE WHERE Region ~= 'Spain';

 > GT WHERE Rainfall > 20;

 < LT WHERE Rainfall < AvgRain;

 >= GE WHERE Rainfall >= AvgRain + 5;

 <= LE WHERE Rainfall <= AvgRain / 1.25;

 & AND WHERE Rainfall > 20 AND Temp < 90;

 |, , ! OR WHERE Rainfall > 20 OR Temp < 90;

 IS NOT MISSING WHERE Region IS NOT MISSING;

 BETWEEN AND WHERE Region BETWEEN 'Plain' AND 'Spain';

 CONTAINS WHERE Region CONTAINS 'ain';

 IN (list) WHERE Region IN ('Rain', 'Spain', 'Plain');

1
Subsetting while reading a raw data file is discussed in section 2.13, and the subsetting IF statement is discussed in section 3.6.

A
A

A
B
C
A
B

WHERE

Chapter 4: Sorting, Printing, and Summarizing Your Data 103

Example You have a database containing information about well-known painters. A subset of
the data appears below. For each artist, the data include the painter’s name, primary style, and
nation of origin:

Mary Cassatt Impressionism U
Paul Cezanne Post-impressionism F
Edgar Degas Impressionism F
Paul Gauguin Post-impressionism F
Claude Monet Impressionism F
Pierre Auguste Renoir Impressionism F
Vincent van Gogh Post-impressionism N

To make this example more realistic, it has two steps: one to create a permanent SAS data set,
the other to subset the data. The first DATA step reads the data from a file named Artists.dat, and
uses direct referencing (you could use a LIBNAME statement instead) to create a permanent SAS
data set named STYLE in a directory named MySASLib (Windows).

DATA 'c:\MySASLib\style';
 INFILE 'c:\MyRawData\Artists.dat';
 INPUT Name $ 1-21 Genre $ 23-40 Origin $ 42;
RUN;

Suppose a day later you wanted to print a list of just the impressionist painters. The quick-and-easy
way to do this is with a WHERE statement and PROC PRINT. The quotation marks around the
data set name tell SAS that this is a permanent SAS data set.

PROC PRINT DATA = 'c:\MySASLib\style';
 WHERE Genre = 'Impressionism';
 TITLE 'Major Impressionist Painters';
 FOOTNOTE 'F = France N = Netherlands U = US';
RUN;

The output looks like this:

 Major Impressionist Painters 1

 Obs Name Genre Origin

 1 Mary Cassatt Impressionism U
 3 Edgar Degas Impressionism F
 5 Claude Monet Impressionism F
 6 Pierre Auguste Renoir Impressionism F

 F = France N = Netherlands U = US

104 The Little SAS Book

4.3 Sorting Your Data with PROC SORT

There are many reasons for sorting your data: to organize data
for a report, before combining data sets, or before using a BY
statement in another PROC or DATA step. Fortunately, PROC
SORT is quite simple. The basic form of this procedure is

 PROC SORT;
 BY variable-1 ... variable-n;

The variables named in the BY statement are called BY variables. You can specify as many BY
variables as you wish. With one BY variable, SAS sorts the data based on the values of that
variable. With more than one variable, SAS sorts observations by the first variable, then by the
second variable within categories of the first, and so on. A BY group is all the observations that
have the same values of BY variables. If, for example, your BY variable is State then all the
observations for North Dakota form one BY group.

The DATA= and OUT= options specify the input and output data sets. If you don’t specify the
DATA= option, then SAS will use the most recently created data set. If you don’t specify the
OUT= option, then SAS will replace the original data set with the newly sorted version. This
sample statement tells SAS to sort the data set named MESSY, and then put the sorted data into a
data set named NEAT:

PROC SORT DATA = messy OUT = neat;

The NODUPKEY option tells SAS to eliminate any duplicate observations that have the same
values for the BY variables. To use this option, just add NODUPKEY to the PROC SORT
statement:

PROC SORT DATA = messy OUT = neat NODUPKEY;

By default SAS sorts data in ascending order, from lowest to highest or from A to Z. To have
your data sorted from highest to lowest, add the keyword DESCENDING to the BY statement
before each variable that should be sorted from highest to lowest. This statement tells SAS to sort
first by State (from A to Z) and then by City (from Z to A) within State:

BY State DESCENDING City;

Example The following data show the average length in feet of selected whales and sharks:

beluga whale 15
whale shark 40
basking shark 30
gray whale 50
mako shark 12
sperm whale 60
dwarf shark .5
whale shark 40
humpback . 50
blue whale 100
killer whale 30

A
B
C
D
D

D
C
A
B
D

PROC

SORT

Chapter 4: Sorting, Printing, and Summarizing Your Data 105

This program reads and sorts the data:

DATA marine;
 INFILE 'c:\MyRawData\Sealife.dat';
 INPUT Name $ Family $ Length;
* Sort the data;
PROC SORT DATA = marine OUT = seasort NODUPKEY;
 BY Family DESCENDING Length;
PROC PRINT DATA = seasort;
 TITLE 'Whales and Sharks';
RUN;

The DATA step reads the raw data from a file called Sealife.dat and creates a SAS data set named
MARINE. Then PROC SORT rearranges the observations by family in ascending order, and by
length in descending order. The NODUPKEY option of PROC SORT eliminates any duplicates,
while the OUT= option writes the sorted data into a new data set named SEASORT. The output
from PROC PRINT looks like this:

 Whales and Sharks 1

 Obs Name Family Length

 1 humpback 50.0
 2 whale shark 40.0
 3 basking shark 30.0
 4 mako shark 12.0
 5 dwarf shark 0.5
 6 blue whale 100.0
 7 sperm whale 60.0
 8 gray whale 50.0
 9 killer whale 30.0
 10 beluga whale 15.0

Notice that the humpback with a missing value for Family became observation one. That is because
missing values are always low for both numeric and character variables. Also, the NODUPKEY
option eliminated a duplicate observation for the whale shark. The log contains these notes
showing that the sorted data set has one fewer observation than the original data set.

NOTE: The data set WORK.MARINE has 11 observations and 3 variables.

NOTE: 1 observations with duplicate key values were deleted.
NOTE: The data set WORK.SEASORT has 10 observations and 3 variables.

106 The Little SAS Book

4.4 Printing Your Data with PROC PRINT

The PRINT procedure is perhaps the most widely used SAS procedure. You have seen this
procedure used many times in this book to print the contents of a SAS data set. In its simplest
form, PROC PRINT prints all variables for all observations in the SAS data set. SAS decides the
best way to format the output, so you don’t have to worry about things like how many variables
will fit on a page. But there are a few more features of PROC PRINT that you might want to use.

The PRINT procedure requires just one statement:

PROC PRINT;

By default, SAS uses the SAS data set created most recently. If you do not want to print the most
recent data set, then use the DATA= option to specify the data set. We recommend always using
the DATA= option for clarity in your programs as it is not always easy to quickly determine
which data set was created last.

PROC PRINT DATA = data-set;

Also, SAS prints the observation numbers along with the variables’ values. If you don’t want
observation numbers, use the NOOBS option in the PROC PRINT statement. If you define
variable labels with a LABEL statement, and you want to print the labels instead of the variable
names, then add the LABEL option as well. The following statement shows all of these options
together:

PROC PRINT DATA = data-set NOOBS LABEL;

The following are optional statements that sometimes come in handy:

BY variable-list; The BY statement starts a new section in the output for each
new value of the BY variables and prints the values of the BY
variables at the top of each section. The data must be presorted
by the BY variables.

ID variable-list; When you use the ID statement, the observation numbers are not
printed. Instead, the variables in the ID variable list appear on
the left-hand side of the page.

SUM variable-list; The SUM statement prints sums for the variables in the list.

VAR variable-list; The VAR statement specifies which variables to print and the
order. Without a VAR statement, all variables in the SAS data set
are printed in the order that they occur in the data set.

Example Students from two fourth-grade classes are selling candy to earn money for a special
field trip. The class earning more money gets a free box of candy. The following are the data for
the results of the candy sale. The students’ names are followed by their classroom number, the
date they turned in their money, the type of candy: mint patties or chocolate dinosaurs, and the
number of boxes sold:

Chapter 4: Sorting, Printing, and Summarizing Your Data 107

Adriana 21 3/21/2000 MP 7
Nathan 14 3/21/2000 CD 19
Matthew 14 3/21/2000 CD 14
Claire 14 3/22/2000 CD 11
Caitlin 21 3/24/2000 CD 9
Ian 21 3/24/2000 MP 18
Chris 14 3/25/2000 CD 6
Anthony 21 3/25/2000 MP 13
Stephen 14 3/25/2000 CD 10
Erika 21 3/25/2000 MP 17

The class earns $1.25 for each box of candy sold. The teachers want a report giving the money
earned for each classroom, the money earned by each student, the type of candy sold, and the date
the students returned their money. The following program reads the data, computes money earned
(Profit), and sorts the data by classroom using PROC SORT. Then, the PROC PRINT step uses a BY
statement to print the data by Class and a SUM statement to give the totals for Profit. The VAR
statement lists the variables to be printed:

DATA sales;
 INFILE 'c:\MyRawData\Candy.dat';
 INPUT Name $ 1-11 Class @15 DateReturned MMDDYY10. CandyType $
 Quantity;
 Profit = Quantity * 1.25;
PROC SORT DATA = sales;
 BY Class;
PROC PRINT DATA = sales;
 BY Class;
 SUM Profit;
 VAR Name DateReturned CandyType Profit;
 TITLE 'Candy Sales for Field Trip by Class';
RUN;

Here are the results. Notice that the values for the variable DateReturned are printed as their SAS
date values. You can use formats, covered in section 4.5, to print dates in readable forms.

 Candy Sales for Field Trip by Class 1
-------------------------------- Class=14 ---------------------------------
 Date Candy
 Obs Name Returned Type Profit
 1 Nathan 14690 CD 23.75
 2 Matthew 14690 CD 17.50
 3 Claire 14691 CD 13.75
 4 Chris 14694 CD 7.50
 5 Stephen 14694 CD 12.50
 ----- ------
 Class 75.00
-------------------------------- Class=21 ---------------------------------
 Date Candy
 Obs Name Returned Type Profit
 6 Adriana 14690 MP 8.75
 7 Caitlin 14693 CD 11.25
 8 Ian 14693 MP 22.50
 9 Anthony 14694 MP 16.25
 10 Erika 14694 MP 21.25
 ----- ------
 Class 80.00
 ======
 155.00

108 The Little SAS Book

0

2

31

1002

2012

4336

Obs Date Sales

1 01/01/60 1,002

2 01/03/60 2,012

3 02/01/60 4,336

4.5 Changing the Appearance of Printed Values with Formats

When SAS prints your data, it decides which format is
best—how many decimal places to print, how much space
to allow for each value, and so on. This is very convenient
and makes your job much easier, but SAS doesn’t always
do what you want. Fortunately you’re not stuck with the
format SAS thinks is best. You can change the appearance
of printed values using SAS formats.

SAS has many formats for character, numeric, and date values. For example, you can use the
COMMAw.d format to print numbers with embedded commas, the $w. format to control the
number of characters printed, and the MMDDYYw. format to print SAS date values (the number
of days since January 1, 1960) in a readable form like 12/03/2003. You can even print your data
in more obscure formats like hexadecimal, zoned decimal, and packed decimal, if you like.

1

The general forms of a SAS format are

Character Numeric Date
$formatw. formatw.d formatw.

where the $ indicates character formats, format is the name of the format, w is the total width
including any decimal point, and d is the number of decimal places. The period in the format is
very important because it distinguishes a format from a variable name, which cannot, by default,
contain any special characters except the underscore.

FORMAT statement You can associate formats with variables in a FORMAT statement.
The FORMAT statement starts with the keyword FORMAT, followed by the variable name (or
names if more than one variable is to be associated with the same format), followed by the
format. For example, the following FORMAT statement associates the DOLLAR8.2 format with
the variables Profit and Loss and associates the MMDDYY8. format with the variable SaleDate:

FORMAT Profit Loss DOLLAR8.2 SaleDate MMDDYY8.;

FORMAT statements can go in either DATA steps or PROC steps. If the FORMAT statement is in
a DATA step, then the format association is permanent and is stored with the SAS data set. If the
FORMAT statement is in a PROC step, then it is temporary—affecting only the results from that
procedure.

PUT statement You can also use formats in PUT statements when writing raw data files or
reports. Place a format after each variable name, as in the following example:

PUT Profit DOLLAR8.2 Loss DOLLAR8.2 SaleDate MMDDYY8.;

Example In section 4.4, results from the fourth-grade candy sale were printed using the
PRINT procedure. The names of the students were printed along with the date they turned in
their money, the type of candy sold, and the profit. You may have noticed that the dates printed

1
 You can also create your own formats using the FORMAT procedure covered in section 4.7.

Chapter 4: Sorting, Printing, and Summarizing Your Data 109

were numbers like 14690 and 14694. Using the FORMAT statement in the PRINT procedure, we
can print the dates in a readable form. At the same time, we can print the variable Profit using the
DOLLAR6.2 format so dollar signs appear before the numbers.

Here are the data, where the students’ names are followed by their classroom, the date they turned
in their money, the type of candy sold: mint patties or chocolate dinosaurs, and the number of
boxes sold:

Adriana 21 3/21/2000 MP 7
Nathan 14 3/21/2000 CD 19
Matthew 14 3/21/2000 CD 14
Claire 14 3/22/2000 CD 11
Caitlin 21 3/24/2000 CD 9
Ian 21 3/24/2000 MP 18
Chris 14 3/25/2000 CD 6
Anthony 21 3/25/2000 MP 13
Stephen 14 3/25/2000 CD 10
Erika 21 3/25/2000 MP 17

The following program reads the raw data and computes Profit. The FORMAT statement in
the PRINT procedure associates the DATE9. format with the variable DateReturned and the
DOLLAR6.2 format with the variable Profit:

DATA sales;
 INFILE 'c:\MyRawData\Candy.dat';
 INPUT Name $ 1-11 Class @15 DateReturned MMDDYY10. CandyType $
 Quantity;
 Profit = Quantity * 1.25;
PROC PRINT DATA = sales;
 VAR Name DateReturned CandyType Profit;
 FORMAT DateReturned DATE9. Profit DOLLAR6.2;
 TITLE 'Candy Sale Data Using Formats';
RUN;

Here are the results:

 Candy Sale Data Using Formats 1

 Date Candy
 Obs Name Returned Type Profit

 1 Adriana 21MAR2000 MP $8.75
 2 Nathan 21MAR2000 CD $23.75
 3 Matthew 21MAR2000 CD $17.50
 4 Claire 22MAR2000 CD $13.75
 5 Caitlin 24MAR2000 CD $11.25
 6 Ian 24MAR2000 MP $22.50
 7 Chris 25MAR2000 CD $7.50
 8 Anthony 25MAR2000 MP $16.25
 9 Stephen 25MAR2000 CD $12.50
 10 Erika 25MAR2000 MP $21.25

110 The Little SAS Book

4.6 Selected Standard Formats

Here are definitions of commonly used formats
1
 along with the width range and default width.

Format Definition Width range Default width

Character

$HEXw. Converts character data to hexidecimal (specify
w twice the length of the variable)

1-32767 4

$w. Writes standard character data—does not trim
leading blanks (same as $CHARw.)

1-32767 Length of
variable or 1

Date, Time, and Datetime2

DATEw. Writes SAS date values in form ddmmmyy or
ddmmmyyyy

5-9 7

DATETIMEw.d Writes SAS datetime values in form
ddmmmyy:hh:mm:ss.ss

7-40 16

DAYw. Writes day of month from a SAS date value 2-32 2

EURDFDDw. Writes a SAS date value in form: dd.mm.yy 2-10 8

JULIANw. Writes a Julian date from a SAS date value in
form yyddd or yyyyddd

5-7 5

MMDDYYw. Writes SAS date values in form mmddyy or
mmddyyyy

2-10 8

TIMEw.d Writes SAS time values in form hh:mm:ss.ss 2-20 8

WEEKDATEw. Writes SAS date values in form
day-of-week, month-name dd, yy or yyyy

3-37 29

WORDDATEw. Writes SAS date values in form
month-name dd, yyyy

3-32 18

Numeric

BESTw. SAS chooses best format—this is the default
format for writing numeric data

1-32 12

COMMAw.d Writes numbers with commas separating every
three digits

2-32 6

DOLLARw.d Writes numbers with a leading $ and commas
separating every three digits

2-32 6

Ew. Writes numbers in scientific notation 7-32 12

PDw.d Writes numbers in packed decimal—w
specifies the number of bytes

1-16 1

w.d Writes standard numeric data 1-32 none

1
Check your SAS Help and Documentation for a complete list of formats.

2
SAS date values are the number of days since January 1, 1960. SAS time values are the number of seconds past midnight, and

 datetime values are the number of seconds since midnight January 1, 1960.

Chapter 4: Sorting, Printing, and Summarizing Your Data 111

Here are examples using the selected formats.

Format Input data PUT statement Results

Character

$HEXw. AB PUT Name $HEX4.; C1C2 (EBCDIC)3

4142 (ASCII)

$w. my cat
 my snake

PUT Animal $8. '*'; my cat *
 my snak*

Date, Time, and Datetime

DATEw. 8966 PUT Birth DATE7.;
PUT Birth DATE9.;

19JUL84
19JUL1984

DATETIMEw. 12182 PUT Start DATETIME13.;
PUT Start DATETIME18.1;

01JAN60:03:23
01JAN60:03:23:02.0

DAYw. 8966 PUT Birth DAY2.;
PUT Birth DAY7.;

19
19

EURDFDDw. 8966 PUT Birth EURDFDD8.; 19.07.84

JULIANw. 8966 PUT Birth JULIAN5.;
PUT Birth JULIAN7.;

84201
1984201

MMDDYYw. 8966 PUT Birth MMDDYY8.;
PUT Birth MMDDYY6.;

7/19/84
071984

TIMEw.d 12182 PUT Start TIME8.;
PUT Start TIME11.2;

3:23:02
3:23:02.00

WEEKDATEw. 8966 PUT Birth WEEKDATE15.;
PUT Birth WEEKDATE29.;

Thu, Jul 19, 84
Thursday, July 19, 1984

WORDDATEw. 8966 PUT Birth WORDDATE12.;
PUT Birth WORDDATE18.;

Jul 19, 1984
July 19, 1984

Numeric

BESTw. 1200001 PUT Value BEST6.;
PUT Value BEST8.;

1.20E6
1200001

COMMAw.d 1200001 PUT Value COMMA9.;
PUT Value COMMA12.2;

1,200,001
1,200,001.00

DOLLARw.d 1200001 PUT Value DOLLAR10.;
PUT Value DOLLAR13.2;

$1,200,001
$1,200,001.00

Ew. 1200001 PUT Value E7.; 1.2E+06

PDw.d 128 PUT Value PD4.; 4

w.d 23.635 PUT Value 6.3;
PUT Value 5.2;

23.635
23.64

3
 The EBCDIC character set is used on most IBM mainframe computers while the ASCII character set is used on most other

 computers. So, depending on the computer you are using, you will get one or the other.

4
 These values cannot be printed.

112 The Little SAS Book

m

f

m

2

1

3

Obs Sex AgeGroup

1 Male Adult

2 Female Teen

3 Male Senior

4.7 Creating Your Own Formats Using PROC FORMAT

At some time you will probably want to create your own
custom formats—especially if you use a lot of coded data.
Imagine that you have just completed a survey for your
company and to save disk space and time, all the responses
to the survey questions are coded. For example, the age
categories teen, adult, and senior are coded as numbers 1,
2, and 3. This is convenient for data entry and analysis but

bothersome when it comes time to interpret the results. You could present your results along
with a code book, and your company directors could look up the codes as they read the results.
But this will probably not get you that promotion you’ve been looking for. A better solution is to
create user-defined formats using PROC FORMAT and print the formatted values instead of the
coded values.

The FORMAT procedure creates formats that will later be associated with variables in a
FORMAT statement. The procedure starts with the statement PROC FORMAT and continues
with one or more VALUE statements (other optional statements are available):

PROC FORMAT;
 VALUE name range-1 = 'formatted-text-1'

range-2 = 'formatted-text-2'
 .
 .
 .

range-n = 'formatted-text-n';

The name in the VALUE statement is the name of the format you are creating. If the format is for
character data, the name must start with a $. The name can’t be longer than 32 characters
(including the $ for character data), it must not start or end with a number, and cannot contain
any special characters except the underscore. In addition, the name can’t be the name of an
existing format. Each range is the value of a variable that is assigned to the text given in quotation
marks on the right side of the equal sign. The text can be up to 32,767 characters long, but some
procedures print only the first 8 or 16 characters. The following are examples of valid range
specifications:

 'A' = 'Asia'
 1, 3, 5, 7, 9 = 'Odd'
 500000 - HIGH = 'Not Affordable'
 13 -< 20 = 'Teenager'
 0 <- HIGH = 'Positive Non Zero'
 OTHER = 'Bad Data'

Character values must be enclosed in quotation marks ('A' for example). If there is more than one
value in the range, then separate the values with a comma or use the hyphen (-) for a continuous
range. The keywords LOW and HIGH can be used in ranges to indicate the lowest and the
highest non-missing value for the variable. You can also use the less than symbol (<) in ranges to
exclude either end point of the range. The OTHER keyword can be used to assign a format to any
values not listed in the VALUE statement.

Chapter 4: Sorting, Printing, and Summarizing Your Data 113

Example Universe Cars is surveying its customers as to their preferences for car colors. They
have information about the customer’s age, sex (coded as 1 for male and 2 for female), annual
income, and preferred car color (yellow, gray, blue, or white). Here are the data:

19 1 14000 Y
45 1 65000 G
72 2 35000 B
31 1 44000 Y
58 2 83000 W

The following program reads the data; creates formats for age, sex, and car color using the
FORMAT procedure; then prints the data using the new formats:

DATA carsurvey;
 INFILE 'c:\MyRawData\Cars.dat';
 INPUT Age Sex Income Color $;
PROC FORMAT;
 VALUE gender 1 = 'Male'
 2 = 'Female';
 VALUE agegroup 13 -< 20 = 'Teen'
 20 -< 65 = 'Adult'
 65 - HIGH = 'Senior';
 VALUE $col 'W' = 'Moon White'
 'B' = 'Sky Blue'
 'Y' = 'Sunburst Yellow'
 'G' = 'Rain Cloud Gray';
* Print data using user-defined and standard (DOLLAR8.) formats;
PROC PRINT DATA = carsurvey;
 FORMAT Sex gender. Age agegroup. Color $col. Income DOLLAR8.;
 TITLE 'Survey Results Printed with User-Defined Formats';
RUN;

This program creates two numeric formats: GENDER for the variable Sex and AGEGROUP for the
variable Age. The program creates a character format, $COL, for the variable Color. Notice that the
format names do not end with periods in the VALUE statement, but they do in the FORMAT
statement.

Here is the output:

 Survey Results Printed with User-Defined Formats 1

 Obs Age Sex Income Color

 1 Teen Male $14,000 Sunburst Yellow
 2 Adult Male $65,000 Rain Cloud Gray
 3 Senior Female $35,000 Sky Blue
 4 Adult Male $44,000 Sunburst Yellow
 5 Adult Female $83,000 Moon White

This example creates temporary formats that exist only for the current job or session. Creating and
using permanent formats is discussed under the FORMAT Procedure in the SAS Help and
Documentation.

114 The Little SAS Book

 4.8 Writing Simple Custom Reports

PROC PRINT is flexible and easy to use. Still, there are times when PROC PRINT just won’t do:
when your report to a state agency has to be spaced just like their fill-in-the-blank form, or when
your client insists that the report contain complete sentences, or when you want one page per
observation. At those times you can use the flexibility of the DATA step, and format to your
heart’s content.

You can write data in a DATA step the same way you read data—but in reverse. Instead of using
an INFILE statement, you use a FILE statement; instead of INPUT statements, you use PUT
statements. This is similar to writing a raw data file in a DATA step (section 9.5), but to write a
report you use the PRINT option telling SAS to include the carriage returns and page breaks
needed for printing. Here is the general form of a FILE statement for creating a report:

 FILE ‘file-specification’ PRINT;

Like INPUT statements, PUT statements can be in list, column, or formatted style, but since SAS
already knows whether a variable is numeric or character, you don’t have to put a $ after
character variables. If you use list format, SAS will automatically put a space between each
variable. If you use column or formatted styles of PUT statements, SAS will put the variables
wherever you specify. You can control spacing with the same pointer controls that INPUT
statements use: @n to move to column n, +n to move n columns, / to skip to the next line, #n to
skip to line n, and the trailing @ to hold the current line. In addition to printing variables, you
can insert a text string by simply enclosing it in quotation marks.

Example To show how this differs from PROC PRINT, we’ll use the candy sales data again.
Two fourth-grade classes have sold candy to raise money for a field trip. Here are the data with
each student’s name, classroom number, the date they turned in their money, the type of candy:
mint patties or chocolate dinosaurs, and the number of boxes sold:

Adriana 21 3/21/2000 MP 7
Nathan 14 3/21/2000 CD 19
Matthew 14 3/21/2000 CD 14
Claire 14 3/22/2000 CD 11
Caitlin 21 3/24/2000 CD 9
Ian 21 3/24/2000 MP 18
Chris 14 3/25/2000 CD 6
Anthony 21 3/25/2000 MP 13
Stephen 14 3/25/2000 CD 10
Erika 21 3/25/2000 MP 17

The teachers want a report for each student showing how much money that student earned.
They want each student’s report on a separate page so it is easy to hand out. Lastly, they want it
to be easy for fourth graders to understand, with complete sentences. Here is the program:

* Write a report with FILE and PUT statements;
DATA _NULL_;
 INFILE 'c:\MyRawData\Candy.dat';
 INPUT Name $ 1-11 Class @15 DateReturned MMDDYY10.
 CandyType $ Quantity;
 Profit = Quantity * 1.25;
 FILE 'c:\MyRawData\Student.rep' PRINT;
 TITLE;

Chapter 4: Sorting, Printing, and Summarizing Your Data 115

 PUT @5 'Candy sales report for ' Name 'from classroom ' Class
 // @5 'Congratulations! You sold ' Quantity 'boxes of candy'
 / @5 'and earned ' Profit DOLLAR6.2 ' for our field trip.';
 PUT _PAGE_;
RUN;

Notice that the keyword _NULL_ appears in the DATA statement instead of a data set name.
NULL tells SAS not to bother writing a SAS data set (since the goal is to create a report not a
data set), and makes the program run slightly faster. The FILE statement creates the output file
for the report, and the PRINT option tells SAS to include carriage returns and page breaks. The
null TITLE statement tells SAS to eliminate all automatic titles.

The first PUT statement in this program starts with a pointer, @5, telling SAS to go to column 5.
Then it tells SAS to print the words Candy sales report for followed by the current value of
the variable Name. The variables Name, Class, and Quantity are printed in list style whereas Profit
is printed using formatted style and the DOLLAR6.2 format. A slash line pointer tells SAS to skip
to the next line; two slashes skips two lines. You could use multiple PUT statements instead of
slashes to skip lines because SAS goes to a new line every time there is a new PUT statement. The
statement PUT _PAGE_ inserts a page break after each student’s report. When the program is run,
the log will contain these notes:

NOTE: 10 records were read from the infile 'c:\MyRawData\Candy.dat'.

NOTE: 30 records were written to the file 'c:\MyRawData\Student.rep'.

The first three pages of the report look like this:

 Candy sales report for Adriana from classroom 21

 Congratulations! You sold 7 boxes of candy
 and earned $8.75 for our field trip.

 Candy sales report for Nathan from classroom 14

 Congratulations! You sold 19 boxes of candy
 and earned $23.75 for our field trip.

 Candy sales report for Matthew from classroom 14

 Congratulations! You sold 14 boxes of candy
 and earned $17.50 for our field trip.

116 The Little SAS Book

4.9 Summarizing Your Data Using PROC MEANS

One of the first things people usually want to do with their data, after reading it and making
sure it is correct, is look at some simple statistics. Statistics such as the mean value, standard
deviation, and minimum and maximum values give you a feel for your data. These types of
information can also alert you to errors in your data (a score of 980 in a basketball game, for
example, is suspect). The MEANS procedure provides simple statistics on numeric variables.

The MEANS procedure starts with the keywords PROC MEANS, followed by options listing the
statistics you want printed:

PROC MEANS options;

If you do not specify any options, MEANS will print the number of non-missing values, the
mean, the standard deviation, and the minimum and maximum values for each variable. There
are over 30 different statistics you can request with the MEANS procedure. The following is a
list of some of the simple statistics. More options for the MEANS procedure are discussed in
section 8.2.

MAX the maximum value
MIN the minimum value
MEAN the mean
MEDIAN the median
N number of non-missing values
NMISS number of missing values
RANGE the range
STDDEV the standard deviation
SUM the sum

If you use the PROC MEANS statement with no other statements, then you will get statistics
for all observations and all numeric variables in your data set. Here are some of the optional
statements you may want to use:

BY variable-list; The BY statement performs separate analyses for each
level of the variables in the list.

1
 The data must first be

sorted in the same order as the variable-list. (You can use
PROC SORT to do this.)

CLASS variable-list; The CLASS statement also performs separate analyses
for each level of the variables in the list,

 1
 but its output

is more compact than with the BY statement, and the
data do not have to be sorted first.

VAR variable-list; The VAR statement specifies which numeric variables to
use in the analysis. If it is absent then SAS uses all
numeric variables.

1
 By default, observations are excluded if they have missing values for BY or CLASS variables. If you want to include missing

values, add the MISSING option to the PROC MEANS statement.

Chapter 4: Sorting, Printing, and Summarizing Your Data 117

Example A wholesale nursery is selling garden flowers, and they want to summarize their sales
figures by month. The data file which follows contains the customer ID, date of sale, and number of
petunias, snapdragons, and marigolds sold:

756-01 05/04/2001 120 80 110
834-01 05/12/2001 90 160 60
901-02 05/18/2001 50 100 75
834-01 06/01/2001 80 60 100
756-01 06/11/2001 100 160 75
901-02 06/19/2001 60 60 60
756-01 06/25/2001 85 110 100

The following program reads the data; computes a new variable, Month, which is the month of the
sale; sorts the data by Month using PROC SORT; then summarizes the data by Month using PROC
MEANS with a BY statement:

DATA sales;
 INFILE 'c:\MyRawData\Flowers.dat';
 INPUT CustomerID $ @9 SaleDate MMDDYY10. Petunia SnapDragon
 Marigold;
 Month = MONTH(SaleDate);
PROC SORT DATA = sales;
 BY Month;
* Calculate means by Month for flower sales;
PROC MEANS DATA = sales;
 BY Month;
 VAR Petunia SnapDragon Marigold;
 TITLE 'Summary of Flower Sales by Month';
RUN;

Here are the results of the PROC MEANS:

 Summary of Flower Sales by Month 1

--------------------------------- Month=5 ---------------------------------
 The MEANS Procedure
Variable N Mean Std Dev Minimum Maximum
ƒƒ
Petunia 3 86.6666667 35.1188458 50.0000000 120.0000000
SnapDragon 3 113.3333333 41.6333200 80.0000000 160.0000000
Marigold 3 81.6666667 25.6580072 60.0000000 110.0000000
ƒƒ

--------------------------------- Month=6 ---------------------------------
Variable N Mean Std Dev Minimum Maximum
ƒƒ
Petunia 4 81.2500000 16.5201897 60.0000000 100.0000000
SnapDragon 4 97.5000000 47.8713554 60.0000000 160.0000000
Marigold 4 83.7500000 19.7378655 60.0000000 100.0000000
ƒƒ

118 The Little SAS Book

a
b

a
a
a
b
b

3

2

4.10 Writing Summary Statistics to a SAS Data Set

Sometimes you want to save summary statistics to a SAS data set for further
analysis, or to merge with other data. For example, you might want to
plot the hourly temperature in your office to show how it heats up every
afternoon causing you to fall asleep, but the instrument you have records
data for every minute. The MEANS procedure can condense the data by
computing the mean temperature for each hour and then save the results in a
SAS data set so it can be plotted.

There are two methods in PROC MEANS for saving summary statistics in a SAS data set. You
can use the Output Delivery System (ODS), which is covered in section 5.3, or you can use the
OUTPUT statement. The OUTPUT statement has the following form:

OUTPUT OUT = data-set output-statistic-list;

Here, data-set is the name of the SAS data set which will contain the results (this can be either
temporary or permanent), and output-statistic-list defines which statistics you want and the
associated variable names. You can have more than one OUTPUT statement and multiple output
statistic lists. The following is one of the possible forms for output-statistic-list:

statistic(variable-list) = name-list

Here, statistic can be any of the statistics available in PROC MEANS (SUM, N, MEAN, for
example), variable-list defines which of the variables in the VAR statement you want to output,
and name-list defines the new variable names for the statistics. The new variable names must be
in the same order as their corresponding variables in variable-list. For example, the following
PROC MEANS statements produce a new data set called ZOOSUM, which contains one
observation with the variables LionWeight, the mean of the lions’ weights, and BearWeight,
the mean of the bears’ weights:

PROC MEANS DATA = zoo NOPRINT;
 VAR Lions Tigers Bears;
 OUTPUT OUT = zoosum MEAN(Lions Bears) = LionWeight BearWeight;
RUN;

The NOPRINT option in the PROC MEANS statement tells SAS there is no need to produce any
printed results since we are saving the results in a SAS data set.

1

The SAS data set created in the OUTPUT statement will contain all the variables defined in the
output statistic list; any variables listed in a BY or CLASS statement; plus two new variables,
TYPE and _FREQ_. If there is no BY or CLASS statement, then the data set will have just one
observation. If there is a BY statement, then the data set will have one observation for each level
of the BY group. CLASS statements produce one observation for each level of interaction of the
class variables. The value of the _TYPE_ variable depends on the level of interaction. The
observation where _TYPE_ has a value of zero is the grand total.

2

1
Using PROC MEANS with a NOPRINT option is the same as using PROC SUMMARY.

2
For a more detailed explanation of the _TYPE_ variable, see the SAS Help and Documentation.

Chapter 4: Sorting, Printing, and Summarizing Your Data 119

Example The following are sales data for a wholesale nursery with the customer ID; date of
sale; and the number of petunias, snapdragons, and marigolds sold:

756-01 05/04/2001 120 80 110
834-01 05/12/2001 90 160 60
901-02 05/18/2001 50 100 75
834-01 06/01/2001 80 60 100
756-01 06/11/2001 100 160 75
901-02 06/19/2001 60 60 60
756-01 06/25/2001 85 110 100

You want to summarize the data so that you have only one observation per customer containing
the sum and mean of the number of plant sets sold, and you want to save the results in a SAS data
set for further analysis. The following program reads the data from the file; sorts by the variable,
CustomerID; and then uses the MEANS procedure with the NOPRINT option to calculate the sums
and means by CustomerID. The results are saved in a SAS data set named TOTALS in the OUTPUT
statement. The sums are given the original variable names Petunia, SnapDragon, and Marigold,
and the means are given new variable names MeanPetunia, MeanSnapDragon, and MeanMarigold.
A PROC PRINT is used to show the TOTALS data set:

DATA sales;
 INFILE 'c:\MyRawData\Flowers.dat';
 INPUT CustomerID $ @9 SaleDate MMDDYY10. Petunia SnapDragon Marigold;
PROC SORT DATA = sales;
 BY CustomerID;
* Calculate means by CustomerID, output sum and mean to new data set;
PROC MEANS NOPRINT DATA = sales;
 BY CustomerID;
 VAR Petunia SnapDragon Marigold;
 OUTPUT OUT = totals MEAN(Petunia SnapDragon Marigold) =
 MeanPetunia MeanSnapDragon MeanMarigold
 SUM(Petunia SnapDragon Marigold) = Petunia SnapDragon Marigold;
PROC PRINT DATA = totals;
 TITLE 'Sum of Flower Data over Customer ID';
 FORMAT MeanPetunia MeanSnapDragon MeanMarigold 3.;
RUN;

Here are the results:

 Sum of Flower Data over Customer ID 1

 Mean
 Customer Mean Snap Mean Snap
Obs ID _TYPE_ _FREQ_ Petunia Dragon Marigold Petunia Dragon Marigold

 1 756-01 0 3 102 117 95 305 350 285
 2 834-01 0 2 85 110 80 170 220 160
 3 901-02 0 2 55 80 68 110 160 135

120 The Little SAS Book

4.11 Counting Your Data with PROC FREQ

A frequency table is a simple list of counts answering the question “How many?”
When you have counts for one variable, they are called one-way frequencies.
When you combine two or more variables, the counts are called two-way, three-
way, and so on up to n-way frequencies; or simply cross-tabulations.

The most obvious reason for using PROC FREQ is to create tables showing the
distribution of categorical data values, but PROC FREQ can also reveal irregu-
larities in your data. You could get dizzy proofreading a large data set, but data
entry errors are often glaringly obvious in a frequency table. The basic form of
PROC FREQ is

 PROC FREQ;
 TABLES variable-combinations;

To produce a one-way frequency table, just list the variable name. This statement produces a
frequency table listing the number of observations for each value of YearsEducation:

TABLES YearsEducation;

To produce a cross-tabulation, list the variables separated by an asterisk. This statement produces a
cross-tabulation showing the number of observations for each combination of Sex by YearsEducation:

TABLES Sex * YearsEducation;

You can specify any number of table requests in a single TABLES statement, and you can have
as many TABLES statements as you wish. Be careful though; reading cross-tabulations of three
or more levels is like playing three-dimensional tic-tac-toe without the benefit of a three-dimen-
sional board.

Options, if any, appear after a slash in the TABLES statement. For a list of statistical options for
PROC FREQ see section 8.3. Options for controlling the output of PROC FREQ include

LIST prints cross-tabulations in list format rather than grid
MISSING includes missing values in frequency statistics
NOCOL suppresses printing of column percentages in cross-tabulations
NOROW suppresses printing of row percentages in cross-tabulations
OUT = data-set writes a data set containing frequencies

The statement below, for instance, tells SAS to include missing values in the frequencies:

TABLES Sex * YearsEducation / MISSING;

Example The proprietor of a local coffee shop, Cathy’s Coffee Cup, keeps a record of all sales.

For each drink sold, she records the type of coffee (cappuccino, espresso, kona, or iced coffee),
and whether the customer walked in or came to the drive-up window. Here are the data with ten
observations per line of raw data:

esp w cap d cap w kon w ice w kon d esp d kon w ice d esp d
cap w esp d cap d Kon d . d kon w esp d cap w ice w kon w
kon w kon w ice d esp d kon w esp d esp w kon w cap w kon w

Apples

Oranges

Chapter 4: Sorting, Printing, and Summarizing Your Data 121

The following program reads the data and produces one-way and two-way frequencies:

DATA orders;
 INFILE 'c:\MyRawData\Coffee.dat';
 INPUT Coffee $ Window $ @@;
* Print tables for Window and Window by Coffee;
PROC FREQ DATA = orders;
 TABLES Window Window * Coffee;
 RUN;

The output contains two tables. The first is a one-way frequency table for the variable Window.
You can see that 13 customers came to the drive-up window while 17 walked into the restaurant.

 The FREQ Procedure

 Cumulative Cumulative
 Window Frequency Percent Frequency Percent
 ƒƒƒ
 d 13 43.33 13 43.33
 w 17 56.67 30 100.00

 Table of Window by Coffee
 Window Coffee
 Frequency‚
 Percent ‚
 Row Pct ‚
 Col Pct ‚Kon ‚cap ‚esp ‚ice ‚kon ‚ Total
 ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 d ‚ 1 ‚ 2 ‚ 6 ‚ 2 ‚ 1 ‚ 12
 ‚ 3.45 ‚ 6.90 ‚ 20.69 ‚ 6.90 ‚ 3.45 ‚ 41.38
 ‚ 8.33 ‚ 16.67 ‚ 50.00 ‚ 16.67 ‚ 8.33 ‚
 ‚ 100.00 ‚ 33.33 ‚ 75.00 ‚ 50.00 ‚ 10.00 ‚
 ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 w ‚ 0 ‚ 4 ‚ 2 ‚ 2 ‚ 9 ‚ 17
 ‚ 0.00 ‚ 13.79 ‚ 6.90 ‚ 6.90 ‚ 31.03 ‚ 58.62
 ‚ 0.00 ‚ 23.53 ‚ 11.76 ‚ 11.76 ‚ 52.94 ‚
 ‚ 0.00 ‚ 66.67 ‚ 25.00 ‚ 50.00 ‚ 90.00 ‚
 ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 Total 1 6 8 4 10 29
 3.45 20.69 27.59 13.79 34.48 100.00
 Frequency Missing = 1

The second table is a two-way cross-tabulation of Window by Coffee. Inside each cell, SAS
prints the frequency, percentage, percentage for that row, and percentage for that column; while
cumulative frequencies and percents appear along the right side and bottom. Notice that the
missing value is mentioned but not included in the statistics. (Use the MISSING option if you want
missing values to be included in the table.) Also, there is one observation with a value of Kon for
Coffee. This data entry error should be kon.

122 The Little SAS Book

4.12 Producing Tabular Reports with PROC TABULATE

Every summary statistic the TABULATE procedure computes can also be produced
by other procedures such as PRINT, MEANS, and FREQ, but PROC TABULATE is
popular because its reports are pretty. If TABULATE were a box, it would be gift-
wrapped.

PROC TABULATE is so powerful that entire books have been written about it, but it
is also so concise that you may feel like you’re reading hieroglyphics. If you find the
syntax of PROC TABULATE a little hard to get used to, that may be because it has
roots outside of SAS. PROC TABULATE is based in part on the Table Producing

Language, a complex and sophisticated language developed by the U.S. Department of Labor.

The general form of PROC TABULATE is

PROC TABULATE;
 CLASS classification-variable-list;
 TABLE page-dimension, row-dimension, column-dimension;

The CLASS statement tells SAS which variables contain categorical data to be used for dividing
observations into groups, while the TABLE statement tells SAS how to organize your table and
what numbers to compute. Each TABLE statement defines only one table, but you may have
multiple TABLE statements. If a variable is listed in a CLASS statement, then, by default, PROC
TABULATE produces simple counts of the number of observations in each category of that
variable. PROC TABULATE offers many other statistics too, and section 4.13 describes how to
request those.

Dimensions Each TABLE statement can specify up to three dimensions. Those dimensions,
separated by commas, tell SAS which variables to use for the pages, rows, and columns in the
report. If you specify only one dimension, then that becomes, by default, the column dimension.
If you specify two dimensions, then you get rows and columns, but no page dimension. If you
specify three dimensions, then you get pages, rows, and columns.

When you write a TABLE statement, start with the column dimension. Once you have that
debugged, add the rows. Once you are happy with your rows and columns, then you are ready
to add a page dimension, if you need one. Notice that the order of dimensions in the TABLE
statement is page, then row, then column. So, to avoid scrambling your table when you add
dimensions, insert the page and row specifications in front of the column dimension.

Missing data By default, observations are excluded from tables if they have missing values
for variables listed in a CLASS statement. If you want to keep these observations, then simply
add the MISSING option to your PROC statement like this:

PROC TABULATE MISSING;

Example Here are data about pleasure boats including the name of each boat, its home port,
whether it is a sailing or power vessel, the type of boat (schooner, catamaran, or yacht), and the
price of an excursion.

Chapter 4: Sorting, Printing, and Summarizing Your Data 123

Silent Lady Maalea sail sch 75.00
America II Maalea sail yac 32.95
Aloha Anai Lahaina sail cat 62.00
Ocean Spirit Maalea power cat 22.00
Anuenue Maalea sail sch 47.50
Hana Lei Maalea power cat 28.99
Leilani Maalea power yac 19.99
Kalakaua Maalea power cat 29.50
Reef Runner Lahaina power yac 29.95
Blue Dolphin Maalea sail cat 42.95

Suppose you want a report showing the number of boats of each type that are sailing or power
vessels in each port. The following DATA step reads the data from a raw data file named Boats.dat.
Then PROC TABULATE creates a three-dimensional report with the values of Port for the pages,
Locomotion for the rows, and Type for the columns.

DATA boats;
 INFILE 'c:\MyRawData\Boats.dat';
 INPUT Name $ 1-12 Port $ 14-20 Locomotion $ 22-26 Type $ 28-30
 Price 32-36;

* Tabulations with three dimensions;
PROC TABULATE DATA = boats;
 CLASS Port Locomotion Type;
 TABLE Port, Locomotion, Type;
 TITLE 'Number of Boats by Port, Locomotion, and Type';
RUN;

This report has two pages, one for each value of the page dimension. Here is one page:

 Number of Boats by Port, Locomotion, and Type 2

 Port Maalea
 „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
 ‚ ‚ Type ‚
 ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
 ‚ ‚ cat ‚ sch ‚ yac ‚
 ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
 ‚ ‚ N ‚ N ‚ N ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
 ‚Locomotion ‚ ‚ ‚ ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚
 ‚power ‚ 3.00‚ .‚ 1.00‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
 ‚sail ‚ 1.00‚ 2.00‚ 1.00‚
 Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

The value of the page dimension appears in the top, left corner of the output. You can see that this
is the page for the port of Maalea. The heading N tells you that the numbers in this table are simple
counts, the number of boats in each group.

124 The Little SAS Book

4.13 Adding Statistics to PROC TABULATE Output

By default, PROC TABULATE produces simple counts for variables listed in a CLASS statement,
but you can request many other statistics in a TABLE statement. You can also concatenate or
cross variables within dimensions. In fact, you can write TABLE statements so complicated that
even you won’t know what the report is going to look like until you run it.

While the CLASS statement lists categorical variables, the VAR statement tells SAS which
variables contain continuous data. Here is the general form:

PROC TABULATE;
 VAR analysis-variable-list;
 CLASS classification-variable-list;
 TABLE page-dimension, row-dimension, column-dimension;

You may have both a CLASS statement and a VAR statement, or just one, but all variables listed
in a TABLE statement must also appear in either a CLASS or a VAR statement.

Keywords In addition to variable names, each dimension can contain keywords. These are a

few of the values TABULATE can compute.

ALL adds a row, column, or page showing the total
MAX highest value
MIN lowest value
MEAN the arithmetic mean
MEDIAN the median
N number of non-missing values
NMISS number of missing values
P90 the 90

th
 percentile

PCTN the percentage of observations for that group
PCTSUM the percentage of a total sum represented by that group
STDDEV the standard deviation
SUM the sum

Concatenating, crossing, and grouping Within a dimension, variables and keywords
can be concatenated, crossed, or grouped. To concatenate variables or keywords simply list them
separated by a space, to cross variables or keywords separate then with an asterisk (*), and to
group them enclose the variables or keywords in parentheses. The keyword ALL is generally
concatenated. To request other statistics, however, cross that keyword with the variable name.

Concatenating: TABLE Locomotion Type ALL;

Crossing: TABLE MEAN * Price;

Crossing, grouping, and concatenating: TABLE PCTN *(Locomotion Type);

Example Here again are the boat data containing the name of each boat, its home port,
whether it is a sailing or power vessel, the type of boat (schooner, catamaran, or yacht), and the
price of an excursion.

Silent Lady Maalea sail sch 75.00
America II Maalea sail yac 32.95
Aloha Anai Lahaina sail cat 62.00
Ocean Spirit Maalea power cat 22.00
Anuenue Maalea sail sch 47.50
Hana Lei Maalea power cat 28.99

Chapter 4: Sorting, Printing, and Summarizing Your Data 125

Leilani Maalea power yac 19.99
Kalakaua Maalea power cat 29.50
Reef Runner Lahaina power yac 29.95
Blue Dolphin Maalea sail cat 42.95

The following program is similar to the one in section 4.12. However, this PROC TABULATE
includes a VAR statement. The TABLE statement in this program contains only two dimensions;
but it also concatenates, crosses, and groups variables and statistics.

DATA boats;
 INFILE 'c:\MyRawData\Boats.dat';
 INPUT Name $ 1-12 Port $ 14-20 Locomotion $ 22-26 Type $ 28-30
 Price 32-36;

* Tabulations with two dimensions and statistics;
PROC TABULATE DATA = boats;
 CLASS Locomotion Type;
 VAR Price;
 TABLE Locomotion ALL, MEAN*Price*(Type ALL);
 TITLE 'Mean Price by Locomotion and Type';
RUN;

The row dimension of this table concatenates the classification variable Locomotion with ALL to
produce totals. The column dimension, on the other hand, crosses MEAN with the analysis
variable Price and with the classification variable Type (which happens to be concatenated and
grouped with ALL). Here are the results:

 Mean Price by Locomotion and Type 1

 „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒ†
 ‚ ‚ Mean ‚
 ‚ ‡ƒƒƒ‰
 ‚ ‚ Price ‚
 ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
 ‚ ‚ Type ‚ ‚
 ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚
 ‚ ‚ cat ‚ sch ‚ yac ‚ All ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
 ‚Locomotion ‚ ‚ ‚ ‚ ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ ‚
 ‚power ‚ 26.83‚ .‚ 24.97‚ 26.09‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
 ‚sail ‚ 52.48‚ 61.25‚ 32.95‚ 52.08‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
 ‚All ‚ 37.09‚ 61.25‚ 27.63‚ 39.08‚
 Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

126 The Little SAS Book

4.14 Enhancing the Appearance of PROC TABULATE Output

When you use PROC TABULATE, SAS wraps your data in tidy little boxes, but there may be
times when they just don’t look right. Using three simple options, you can enhance the
appearance of your output. Think of it as changing the wrapping paper.

FORMAT= option To change the format of all the data cells in your table, use the
FORMAT= option in your PROC statement. For example, if you needed the numbers in your
table to have commas and no decimal places, you could use this PROC statement

PROC TABULATE FORMAT=COMMA10.0;

telling SAS to use the COMMA10.0 format for all the data cells in your table.

BOX= and MISSTEXT= options While the FORMAT= option must be used in your
PROC statement, the BOX= and MISSTEXT= options go in TABLE statements. The BOX= option
allows you to write a brief phrase in the normally empty box that appears in the upper left
corner of every TABULATE report. Using this empty space can give your reports a nicely
polished look. The MISSTEXT= option, on the other hand, specifies a value for SAS to print in
empty data cells. The period that SAS prints, by default, for missing values can seem downright
mysterious to someone, perhaps your CEO, who is not familiar with SAS output. You can give
them something more meaningful with the MISSTEXT= option. This statement

TABLE Region, MEAN*Sales / BOX='Mean Sales by Region' MISSTEXT='No Sales';

tells SAS to print the title “Mean Sales by Region” in the upper left corner of the table, and to
print the words “No Sales” in any cells of the table that have no data. The BOX= and
MISSTEXT= options must be separated from the dimensions of the TABLE statement by a slash.

Example Here again are the boat data containing the name of each boat, its home port,
whether it is a sailing or power vessel, the type of boat (schooner, catamaran, or yacht), and the
price of an excursion.

Silent Lady Maalea sail sch 75.00
America II Maalea sail yac 32.95
Aloha Anai Lahaina sail cat 62.00
Ocean Spirit Maalea power cat 22.00
Anuenue Maalea sail sch 47.50
Hana Lei Maalea power cat 28.99
Leilani Maalea power yac 19.99
Kalakaua Maalea power cat 29.50
Reef Runner Lahaina power yac 29.95
Blue Dolphin Maalea sail cat 42.95

The following program is the same as the one in the previous section except that the FORMAT=,
BOX=, and MISSTEXT= options have been added. Notice that the FORMAT= option goes in the
PROC statement, while the BOX= and MISSTEXT= options go in the TABLE statement following a
slash. Because the BOX= option serves as a title, a null TITLE statement is used to remove the usual
title.

Chapter 4: Sorting, Printing, and Summarizing Your Data 127

DATA boats;
 INFILE 'c:\MyRawData\Boats.dat';
 INPUT Name $ 1-12 Port $ 14-20 Locomotion $ 22-26 Type $ 28-30
 Price 32-36;

* PROC TABULATE report with options;
PROC TABULATE DATA = boats FORMAT=DOLLAR9.2;
 CLASS Locomotion Type;
 VAR Price;
 TABLE Locomotion ALL, MEAN*Price*(Type ALL)
 /BOX='Full Day Excursions' MISSTEXT='none';
 TITLE;
RUN;

Here is the enhanced output:

 1

 „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
 ‚Full Day ‚ Mean ‚
 ‚Excursions ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰
 ‚ ‚ Price ‚
 ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ‰
 ‚ ‚ Type ‚ ‚
 ‚ ‡ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ‰ ‚
 ‚ ‚ cat ‚ sch ‚ yac ‚ All ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
 ‚Locomotion ‚ ‚ ‚ ‚ ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ ‚
 ‚power ‚ $26.83‚ none‚ $24.97‚ $26.09‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
 ‚sail ‚ $52.48‚ $61.25‚ $32.95‚ $52.08‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
 ‚All ‚ $37.09‚ $61.25‚ $27.63‚ $39.08‚
 Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒŒ

Notice that all the data cells now use the DOLLAR9.2 format as specified in the FORMAT= option.
The text “Full Day Excursions” now appears in the upper left corner which was empty in the
previous section. In addition, the one data cell with no data now shows the word “none” instead of
a period.

128 The Little SAS Book

4.15 Changing Headers in PROC TABULATE Output

The TABULATE procedure produces reports with a lot of headers. Sometimes there are so many
headers that your reports look cluttered; at other times you may simply feel that a different
header would be more meaningful. Before you can change a header, though, you need to
understand what type of header it is. TABULATE reports have two basic types of headers:
headers that are the values of variables listed in a CLASS statement, and headers that are the
names of variables and keywords. You use different methods to change different types of
headers.

CLASS variable values To change headers which are the values of variables listed in a

CLASS statement, use the FORMAT procedure to create a user-defined format. Then assign the
format to the variable in a FORMAT statement (section 4.7).

Variable names and keywords To change headers which are the names of variables or
keywords, put an equal sign after the variable or keyword followed by the new header enclosed
in quotation marks.

1
 You can eliminate a header entirely by setting it equal to blank (two

quotation marks with nothing in between), and SAS will remove the box for that header.This
TABLE statement

TABLE Region='', MEAN=''*Sales='Mean Sales by Region';

tells SAS to remove the headers for Region, and MEAN, and to change the header for the
variable Sales to “Mean Sales by Region.”

In some cases SAS leaves the empty box when a row header is set to blank. This happens for
statistics and analysis variables (but not class variables). To force SAS to remove the empty box,
add the ROW=FLOAT option to the end of your TABLE statement like this:

TABLE MEAN=''*Sales='Mean Sales by Region', Region='' / ROW=FLOAT;

Example Here again are the boat data containing the name of each boat, its home port,
whether it is a sailing or power vessel, the type of boat (schooner, catamaran, or yacht), and the
price of an excursion.

Silent Lady Maalea sail sch 75.00
America II Maalea sail yac 32.95
Aloha Anai Lahaina sail cat 62.00
Ocean Spirit Maalea power cat 22.00
Anuenue Maalea sail sch 47.50
Hana Lei Maalea power cat 28.99
Leilani Maalea power yac 19.99
Kalakaua Maalea power cat 29.50
Reef Runner Lahaina power yac 29.95
Blue Dolphin Maalea sail cat 42.95

The following program is the same as the one in the previous section except that the headers have
been changed. To start with, a FORMAT procedure creates a user-defined format named $typ.

1
You can also change variable headers with a LABEL statement (section 4.1), and keyword headers with a KEYLABEL statement.

However, the TABLE statement method used in this section is the only way that you can remove a variable header without
leaving a blank box behind.

Chapter 4: Sorting, Printing, and Summarizing Your Data 129

Then the $typ. format is assigned to the variable Type using a FORMAT statement. In the TABLE
statement, more headers are changed. The headers for Locomotion, MEAN, and Type are all set to
blank, while the header for Price is set to “Mean Price by Type of Boat.”

DATA boats;
 INFILE 'c:\MyRawData\Boats.dat';
 INPUT Name $ 1-12 Port $ 14-20 Locomotion $ 22-26 Type $ 28-30
 Price 32-36;

* Changing headers;
PROC FORMAT;
 VALUE $typ 'cat' = 'catamaran'
 'sch' = 'schooner'
 'yac' = 'yacht';

PROC TABULATE DATA = boats FORMAT=DOLLAR9.2;
 CLASS Locomotion Type;
 VAR Price;
 FORMAT Type $typ.;
 TABLE Locomotion='' ALL,
 MEAN=''*Price='Mean Price by Type of Boat'*(Type='' ALL)
 /BOX='Full Day Excursions' MISSTEXT='none';
 TITLE;
RUN;

This program does not require the ROW=FLOAT option because the only variable being set to
blank in the row dimension is a class variable. If you put an analysis variable or statistics keyword
in the row dimension and set it equal to blank, then you would need to add the ROW=FLOAT
option to remove empty boxes. Here is the output:

 1

 „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
 ‚Full Day ‚ Mean Price by Type of Boat ‚
 ‚Excursions ‡ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ‰
 ‚ ‚catamaran‚schooner ‚ yacht ‚ All ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
 ‚power ‚ $26.83‚ none‚ $24.97‚ $26.09‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
 ‚sail ‚ $52.48‚ $61.25‚ $32.95‚ $52.08‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
 ‚All ‚ $37.09‚ $61.25‚ $27.63‚ $39.08‚
 Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒŒ

This output is the same as the output in the preceding section, except for the new headers. Notice
how much cleaner and more compact this report is.

130 The Little SAS Book

4.16 Specifying Multiple Formats for Data Cells in PROC
TABULATE Output

Using the FORMAT= option in a PROC TABULATE statement, you can easily specify a format
for the data cells; but you can only specify one format, and it must apply to all the data cells. If
you want to use more than one format in your table, you can do that by putting the FORMAT=
option in your TABLE statement.

To apply a format to an individual variable, cross it with the variable name. The general form of
this is

variable-name*FORMAT=formatw.d

Then you insert this rather convoluted construction in your TABLE statement.

TABLE Region, MEAN*(Sales*FORMAT=COMMA8.0 Profit*FORMAT=DOLLAR10.2);

This TABLE statement applies the COMMA8.0 format to a variable named Sales, and the
DOLLAR10.2 format to Profit.

Example Here again are the boat data containing the name of each boat, its home port,
whether it is a sailing or power vessel, the type of boat (schooner, catamaran, or yacht), and the
price of an excursion. A new variable has been added showing the length of each boat in feet.

Silent Lady Maalea sail sch 75.00 64
America II Maalea sail yac 32.95 65
Aloha Anai Lahaina sail cat 62.00 60
Ocean Spirit Maalea power cat 22.00 65
Anuenue Maalea sail sch 47.50 52
Hana Lei Maalea power cat 28.99 110
Leilani Maalea power yac 19.99 45
Kalakaua Maalea power cat 29.50 70
Reef Runner Lahaina power yac 29.95 50
Blue Dolphin Maalea sail cat 42.95 65

Suppose you want to show the mean price and mean length of boats side-by-side in the same
report. Using dollar signs makes sense for price, but not for length. In the program below, the
format DOLLAR6.2 is applied to the variable Price, while the format 6.0 is applied to Length.
Notice that the FORMAT= options are crossed with the variables using an asterisk.

DATA boats;
 INFILE 'c:\MyRawData\Boats.dat';
 INPUT Name $ 1-12 Port $ 14-20 Locomotion $ 22-26 Type $ 28-30
 Price 32-36 Length 38-40;

* Using the FORMAT= option in the TABLE statement;
PROC TABULATE DATA = boats;
 CLASS Locomotion Type;
 VAR Price Length;
 TABLE Locomotion ALL,
 MEAN * (Price*FORMAT=DOLLAR6.2 Length*FORMAT=6.0) * (Type ALL);
 TITLE 'Price and Length by Type of Boat';
RUN;

Chapter 4: Sorting, Printing, and Summarizing Your Data 131

Here is the resulting output:

 Price and Length by Type of Boat 1

„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒ†
‚ ‚ Mean ‚
‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚ ‚ Price ‚ Length ‚
‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒ‰
‚ ‚ Type ‚ ‚ Type ‚ ‚
‚ ‡ƒƒƒƒƒƒ…ƒƒƒƒƒƒ…ƒƒƒƒƒƒ‰ ‡ƒƒƒƒƒƒ…ƒƒƒƒƒƒ…ƒƒƒƒƒƒ‰ ‚
‚ ‚ cat ‚ sch ‚ yac ‚ All ‚ cat ‚ sch ‚ yac ‚ All ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒ‰
‚Locomotion ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚
‚power ‚$26.83‚ .‚$24.97‚$26.09‚ 82‚ .‚ 48‚ 68‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒ‰
‚sail ‚$52.48‚$61.25‚$32.95‚$52.08‚ 63‚ 58‚ 65‚ 61‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒ‰
‚All ‚$37.09‚$61.25‚$27.63‚$39.08‚ 74‚ 58‚ 53‚ 65‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒŒ

Notice that the values for Price and Length are printed using different formats.

132 The Little SAS Book

4.17 Producing Simple Output with PROC REPORT

The REPORT procedure shares features with the PRINT, MEANS, TABULATE, and
SORT procedures and the DATA step. With all those features rolled into one procedure,
it’s not surprising that PROC REPORT can be complex—in fact entire books have been
written about it—but with all those features comes power.

Here is the general form of a basic REPORT procedure:

PROC REPORT NOWINDOWS;
COLUMN variable-list;

In its simplest form, the COLUMN statement is similar to a VAR statement in PROC PRINT,
telling SAS which variables to include and in what order. If you leave out the COLUMN
statement, SAS will, by default, include all the variables in your data set. If you leave out the
NOWINDOWS option, SAS will open the interactive Report window.

1

By default, PROC REPORT prints your data immediately beneath the column headers. To
visually separate the headers and data, use the HEADLINE or HEADSKIP options like this:

PROC REPORT NOWINDOWS HEADLINE HEADSKIP;

HEADLINE draws a line under the column headers while HEADSKIP puts a blank line beneath
the column headers.

2

Numeric versus character data The type of report you get from PROC REPORT depends,
in part, on the type of data you use. If you have at least one character variable in your report,
then, by default, you will get a detail report with one row per observation. If, on the other hand,
your report includes only numeric variables, then, by default, PROC REPORT will sum those
variables. Even dates will be summed, by default, because they are numeric.

3

Example Here are data about national parks and monuments in the USA. The variables are
name, type (NP for national park or NM for national monument), region (East or West), number
of museums (including visitor centers), and number of campgrounds.

Dinosaur NM West 2 6
Ellis Island NM East 1 0
Everglades NP East 5 2
Grand Canyon NP West 5 3
Great Smoky Mountains NP East 3 10
Hawaii Volcanoes NP West 2 2
Lava Beds NM West 1 1
Statue of Liberty NM East 1 0
Theodore Roosevelt NP . 2 2
Yellowstone NP West 9 11
Yosemite NP West 2 13

1
 The Report window is a non-programming approach to using PROC REPORT. For more information see the SAS Help and

Documentation.
2
 The HEADLINE and HEADSKIP options work only for the LISTING destination. If you send your output to another

destination such as HTML, SAS will ignore these options. See chapter 5 for an explanation of destinations.
3
 You can override this default by assigning one of your numeric variables a usage type of DISPLAY in a DEFINE statement.

See section 4.18.

Chapter 4: Sorting, Printing, and Summarizing Your Data 133

The following program reads the data in a DATA step, and then runs two reports. The first report
has no COLUMN statement so SAS will use all the variables, while the second uses a COLUMN
statement to select just the numeric variables.

DATA natparks;
 INFILE 'c:\MyRawData\Parks.dat';
 INPUT Name $ 1-21 Type $ Region $ Museums Camping;

PROC REPORT DATA = natparks NOWINDOWS HEADLINE;
 TITLE 'Report with Character and Numeric Variables';
RUN;

PROC REPORT DATA = natparks NOWINDOWS HEADLINE;
 COLUMN Museums Camping;
 TITLE 'Report with Only Numeric Variables';
RUN;

While the two PROC steps are only slightly different, the reports they produced differ
dramatically. The first report is almost identical to the output you would get from a PROC PRINT
except for the absence of the OBS column. The second report, since it contained only numeric
variables, was summed.

 Report with Character and Numeric Variables 1

 Name Type Region Museums Camping
 ƒƒƒ
 Dinosaur NM West 2 6
 Ellis Island NM East 1 0
 Everglades NP East 5 2
 Grand Canyon NP West 5 3
 Great Smoky Mountains NP East 3 10
 Hawaii Volcanoes NP West 2 2
 Lava Beds NM West 1 1
 Statue of Liberty NM East 1 0
 Theodore Roosevelt NP 2 2
 Yellowstone NP West 9 11
 Yosemite NP West 2 13

 Report with Only Numeric Variables 2

 Museums Camping
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 33 50

134 The Little SAS Book

4.18 Using DEFINE Statements in PROC REPORT

The DEFINE statement is a general purpose statement that specifies options for an individual
variable. You can have a DEFINE statement for every variable, but you only need to have a
DEFINE statement if you want to specify an option for that particular variable. The general form
of a DEFINE statement is

DEFINE variable / options ’column-header’;

In a DEFINE statement, you specify the variable name followed by a slash and any options for
that particular variable.

Usage Options The most important option is a usage option that tells SAS how that variable
is to be used. Possible values of usage options include:

 1

ACROSS creates a column for each unique value of the variable.
ANALYSIS calculates statistics for the variable. This is the default usage for numeric

variables, and the default statistic is sum.
DISPLAY creates one row for each observation in the data set. This is the default usage

for character variables.
GROUP creates a row for each unique value of the variable.
ORDER creates one row for each observation with rows arranged according to the

values of the order variable.

Changing column headers There are several ways to change column headers in PROC

REPORT including using a LABEL statement as described in section 4.1, or specifying a column
header in a DEFINE statement.

2
 The following statement tells SAS to arrange a report by the

values of the variable Age, and use the words “Age at Admission” as the column header for that
variable. Using a slash in a column header tells SAS to split the header at that point.

3

DEFINE Age / ORDER 'Age at/Admission';

Missing data By default, observations are excluded from reports if they have missing values

for order, group, or across variables. If you want to keep these observations, then simply add the
MISSING option to your PROC statement like this:

PROC REPORT NOWINDOWS MISSING;

Example Here again are the data about national parks and monuments. The variables are
name, type (NP for national park or NM for national monument), region (East or West), number
of museums (including visitor centers), and number of campgrounds.

1
 Another usage type is COMPUTED. See the SAS Help and Documentation for more information.

2
 In addition to the LABEL and DEFINE statements, you can change column headers in the COLUMN statement which allows

you to create spanning headers. See the SAS Help and Documentation for more information.

3
 At the time this book was written, PROC REPORT did not automatically split mixed case variable names the way most

procedures do.

Chapter 4: Sorting, Printing, and Summarizing Your Data 135

Dinosaur NM West 2 6
Ellis Island NM East 1 0
Everglades NP East 5 2
Grand Canyon NP West 5 3
Great Smoky Mountains NP East 3 10
Hawaii Volcanoes NP West 2 2
Lava Beds NM West 1 1
Statue of Liberty NM East 1 0
Theodore Roosevelt NP . 2 2
Yellowstone NP West 9 11
Yosemite NP West 2 13

The following PROC REPORT contains two DEFINE statements. The first defines Region as having
a usage type of ORDER. The second specifies a column header for the variable Camping. Camping
is a numeric variable and has a default usage of ANALYSIS, so the DEFINE statement does not
change its usage. Since the MISSING option appears in the PROC statement, observations with
missing values of Region will be included in the report.

DATA natparks;
 INFILE 'c:\MyRawData\Parks.dat';
 INPUT Name $ 1-21 Type $ Region $ Museums Camping;

* PROC REPORT with ORDER variable, MISSING option, and column header;
PROC REPORT DATA = natparks NOWINDOWS HEADLINE MISSING;
 COLUMN Region Name Museums Camping;
 DEFINE Region / ORDER;
 DEFINE Camping / ANALYSIS 'Camp/Grounds';
 TITLE 'National Parks and Monuments Arranged by Region';
RUN;

Here is the resulting output:

 National Parks and Monuments Arranged by Region 1

 Camp
 Region Name Museums Grounds
 ƒƒƒ
 Theodore Roosevelt 2 2
 East Ellis Island 1 0
 Everglades 5 2
 Great Smoky Mountains 3 10
 Statue of Liberty 1 0
 West Dinosaur 2 6
 Grand Canyon 5 3
 Hawaii Volcanoes 2 2
 Lava Beds 1 1
 Yellowstone 9 11
 Yosemite 2 13

Notice that there are three values of Region: missing, East, and West. If you have more than one
order variable, then the data will be arranged according to the values of the one that comes first in
the COLUMN statement, then by the one that comes second, and so on.

136 The Little SAS Book

Department Salary Bonus
 A ~~~ ~~
 B ~~ ~

 Department
 A B
Salary Bonus Salary Bonus
    ~~~        ~~          ~~            ~ 

4.19   Creating Summary Reports with PROC REPORT 

Two different usage types cause the REPORT procedure to “roll up” data into summary groups 
based on the values of a variable. While the GROUP usage type produces summary rows, the 
ACROSS usage type produces summary columns.

1

Group variables  Defining a group variable is fairly simple. Just specify the GROUP usage 
option in a DEFINE statement. By default, analysis variables will be summed.

2
 The following 

PROC REPORT tells SAS to produce a report showing the sum of Salary and of Bonus with a 
row for each value of Department. 

PROC REPORT DATA = employees NOWINDOWS; 
   COLUMN Department Salary Bonus; 
   DEFINE Department / GROUP;

Across variables To define an across variable, you also use a DEFINE statement. However, 

by default SAS produces counts rather than sums. To obtain sums
2
 for across variables, you must 

tell SAS which variables to summarize. You do that by putting a comma between the across 
variable and analysis variable (or variables if you enclose them in parentheses). The following 
PROC REPORT tells SAS to produce a report showing the sum of Salary and of Bonus with one 
column for each value of Department. 

PROC REPORT DATA = employees NOWINDOWS; 
   COLUMN Department , (Salary Bonus); 
   DEFINE Department / ACROSS;

Example Here again are the data about national parks and monuments. The variables are 
name, type (NP for national park or NM for national monument),  region (East or West), number 
of museums (including visitor centers), and number of campgrounds. 

Dinosaur              NM West 2  6 
Ellis Island          NM East 1  0 
Everglades            NP East 5  2 
Grand Canyon          NP West 5  3 
Great Smoky Mountains NP East 3 10 
Hawaii Volcanoes      NP West 2  2 
Lava Beds             NM West 1  1 
Statue of Liberty     NM East 1  0 
Theodore Roosevelt    NP .    2  2 
Yellowstone           NP West 9 11 
Yosemite              NP West 2 13 

1 If you have any display or order variables in the COLUMN statement, SAS will produce a “detail” report instead of 
consolidating data into summary groups. 

2 To request other statistics, see section 4.21. 



Chapter 4: Sorting, Printing, and Summarizing Your Data   137

The following program contains two PROC REPORTs. In the first, Region and Type are both 
defined as group variables. In the second, Region is still a group variable, but Type is an across 
variable. Notice that the two COLUMN statements are the same except for punctuation added to 
the second procedure to cross the across variable with the analysis variables. 

DATA natparks; 
   INFILE 'c:\MyRawData\Parks.dat'; 
   INPUT Name $ 1-21 Type $ Region $ Museums Camping; 

* Region and Type as GROUP variables; 
PROC REPORT DATA = natparks NOWINDOWS HEADLINE; 
   COLUMN Region Type Museums Camping; 
   DEFINE Region / GROUP; 
   DEFINE Type / GROUP; 
   TITLE 'Summary Report with Two Group Variables'; 
RUN;

* Region as GROUP and Type as ACROSS with sums; 
PROC REPORT DATA = natparks NOWINDOWS HEADLINE; 
   COLUMN Region Type,(Museums Camping); 
   DEFINE Region / GROUP; 
   DEFINE Type / ACROSS; 
   TITLE 'Summary Report with a Group and an Across Variable'; 
RUN;

Here is the resulting output: 

               Summary Report with Two Group Variables               1 

               Region    Type        Museums    Camping 
               ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
               East      NM                2          0 
                         NP                8         12 
               West      NM                3          7 
                         NP               18         29 

          Summary Report with a Group and an Across Variable         2 

                                      Type 
                            NM                    NP 
         Region      Museums    Camping    Museums    Camping 
         ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
         East              2          0          8         12 
         West              3          7         18         29 



138 The Little SAS Book

4.20  Adding Summary Breaks to PROC REPORT Output 

Two kinds of statements allow you to insert breaks into a report. The BREAK statement adds a 
break for each unique value of the variable you specify, while the RBREAK statement does the 
same for the entire report (or BY-group if you are using a BY statement). The general forms of 
these statements are 

BREAK location variable / options;
RBREAK location / options;

where location has two possible values�BEFORE or AFTER�depending on whether you want 
the break to precede or follow that particular section of the report. The options that come after 
the slash tell SAS what kind of break to insert. Some of the possible options are

1

OL draws a line over the break 

PAGE starts a new page 

SKIP inserts a blank line 

SUMMARIZE inserts sums of numeric variables 

UL draws a line under the break 

Notice that the BREAK statement requires you to specify a variable, but the RBREAK statement 
does not. That’s because the RBREAK statement produces only one break (at the beginning or 
end), while the BREAK statement produces one break for every unique value of the variable you 
specify. That variable must be either a group or order variable and therefore must also be listed 
in a DEFINE statement with either the GROUP or ORDER usage option. You can use an 
RBREAK statement in any report, but you can use BREAK only if you have at least one group or 
order variable. 

Example Here again are the data about national parks and monuments. The variables are 
name, type (NP for national park or NM for national monument),  region (East or West), number 
of museums (including visitor centers), and number of campgrounds. 

Dinosaur              NM West 2  6 
Ellis Island          NM East 1  0 
Everglades            NP East 5  2 
Grand Canyon          NP West 5  3 
Great Smoky Mountains NP East 3 10 
Hawaii Volcanoes      NP West 2  2 
Lava Beds             NM West 1  1 
Statue of Liberty     NM East 1  0 
Theodore Roosevelt    NP .    2  2 
Yellowstone           NP West 9 11 
Yosemite              NP West 2 13 

The following program defines Region as an order variable, and then uses both BREAK and 
RBREAK statements with the AFTER location. The SUMMARIZE option tells SAS to print totals for 
numeric variables, while the OL and SKIP options tell SAS to draw a line above the totals and skip 
a line under the totals. 

1  All these options work for the Listing destination; not all work for other destinations. At the time this book was written, 
PAGE and SUMMARIZE worked for HTML, RTF, and PDF; OL, UL and SKIP were ignored.



Chapter 4: Sorting, Printing, and Summarizing Your Data   139

DATA natparks; 
   INFILE 'c:\MyRawData\Parks.dat'; 
   INPUT Name $ 1-21 Type $ Region $ Museums Camping; 

* PROC REPORT with breaks; 
PROC REPORT DATA = natparks NOWINDOWS HEADLINE; 
   COLUMN Name Region Museums Camping; 
   DEFINE Region / ORDER; 
   BREAK AFTER Region / SUMMARIZE OL SKIP; 
   RBREAK AFTER / SUMMARIZE OL SKIP; 
   TITLE 'National Parks'; 
RUN;

Here is the resulting output: 

                              National Parks                       1 

          Name                   Region      Museums    Camping 
          ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
          Ellis Island           East              1          0 
          Everglades                               5          2 
          Great Smoky Mountains                    3         10 
          Statue of Liberty                        1          0 
                                 ƒƒƒƒƒƒƒƒ  ƒƒƒƒƒƒƒƒƒ  ƒƒƒƒƒƒƒƒƒ 
                                 East             10         12 

          Dinosaur               West              2          6 
          Grand Canyon                             5          3 
          Hawaii Volcanoes                         2          2 
          Lava Beds                                1          1 
          Yellowstone                              9         11 
          Yosemite                                 2         13 
                                 ƒƒƒƒƒƒƒƒ  ƒƒƒƒƒƒƒƒƒ  ƒƒƒƒƒƒƒƒƒ 
                                 West             21         36 

                                           ƒƒƒƒƒƒƒƒƒ  ƒƒƒƒƒƒƒƒƒ 
                                                  31         48 



140 The Little SAS Book

4.21 Adding Statistics to PROC REPORT Output 

There are several ways to request statistics in the REPORT procedure. An easy method is to 
insert statistics keywords directly into the  COLUMN statement along with the variable names. 
This is a little like requesting statistics in a TABLE statement in PROC TABULATE, except that 
instead of using an asterisk to cross a statistics keyword with a variable, you use a comma. In 
fact, PROC REPORT can produce all the same statistics as PROC TABULATE and PROC 
MEANS because it uses the same internal engine to compute those statistics. These are a few of 
the statistics PROC REPORT can compute: 

MAX highest value
MIN lowest value 
MEAN the arithmetic mean 
MEDIAN the median 
N number of non-missing values 
NMISS number of missing values 
P90 the 90

th
 percentile 

PCTN the percentage of observations for that group 
PCTSUM the percentage of a total sum represented by that group 
STD the standard deviation 
SUM the sum 

Applying statistics to variables  To request a statistic for a particular variable, insert a 
comma between the statistic and variable in the COLUMN statement. One statistic, N, does not 
require a comma because it does not apply to a particular variable. If you insert N in a COLUMN 
statement, then SAS will print the number of observations that contributed to that row of the 
report. This statement tells SAS to print two columns of data: the median of a variable named 
Age, and the number of observations in that row. 

COLUMN  Age,MEDIAN  N; 

To request multiple statistics or statistics for multiple variables, put parentheses around the 
statistics or variables. This statement uses parentheses to request two statistics for the variable Age, 
and then requests one statistic for two variables, Height and Weight.

COLUMN Age,(MIN MAX) (Height Weight),MEAN; 

Example Here again are the data about national parks and monuments. The variables are 

name, type (NP for national park or NM for national monument),  region (East or West), number 
of museums (including visitor centers), and number of campgrounds. 

Dinosaur              NM West 2  6 
Ellis Island          NM East 1  0 
Everglades            NP East 5  2 
Grand Canyon          NP West 5  3 
Great Smoky Mountains NP East 3 10 
Hawaii Volcanoes      NP West 2  2 
Lava Beds             NM West 1  1 
Statue of Liberty     NM East 1  0 
Theodore Roosevelt    NP .    2  2 
Yellowstone           NP West 9 11 
Yosemite              NP West 2 13 



Chapter 4: Sorting, Printing, and Summarizing Your Data   141

The following program contains two PROC REPORTs. Both procedures request the statistics N and 
MEAN, but the first report defines Type as a group variable, while the second defines Type as an 
across variable. 

DATA natparks; 
   INFILE 'c:\MyRawData\Parks.dat'; 
   INPUT Name $ 1-21 Type $ Region $ Museums Camping; 

*Statistics in COLUMN statement with two group variables; 
PROC REPORT DATA = natparks NOWINDOWS HEADLINE; 
   COLUMN Region Type N (Museums Camping),MEAN; 
   DEFINE Region / GROUP; 
   DEFINE Type / GROUP; 
   TITLE 'Statistics with Two Group Variables'; 
RUN;

*Statistics in COLUMN statement with group and across variables; 
PROC REPORT DATA = natparks NOWINDOWS HEADLINE; 
   COLUMN Region N Type,(Museums Camping),MEAN; 
   DEFINE Region / GROUP; 
   DEFINE Type / ACROSS; 
   TITLE 'Statistics with a Group and Across Variable'; 
RUN;

Here is the resulting output: 

                 Statistics with Two Group Variables                 1 

                                            Museums    Camping 
           Region    Type              N       MEAN       MEAN 
           ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
           East      NM                2          1          0 
                     NP                2          4          6 
           West      NM                2        1.5        3.5 
                     NP                4        4.5       7.25 

             Statistics with a Group and Across Variable            2 

                                              Type 
                                    NM                    NP 
                             Museums    Camping    Museums    Camping 
      Region            N       MEAN       MEAN       MEAN       MEAN 
      ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
      East              4          1          0          4          6 
      West              6        1.5        3.5        4.5       7.25 

Notice that these reports are similar to the reports in section 4.19 except that these contain counts 
and means instead of sums. 



5

From Respectfully Quoted: A Dictionary of Quotations from the Library of Congress,
edited by Suzy Platt, copyright 1992 by Library of Congress.

‘‘
’’

Some men see things as 
they are and say, ‘Why.’ I dream
things that never were and say,
‘Why not.’

ROBERT F. KENNEDY



CHAPTER 5

Enhancing Your Output with ODS 
5.1 Concepts of the Output Delivery System    144

5.2 Tracing and Selecting Procedure Output    146

5.3 Creating SAS Data Sets from Procedure Output    148

5.4 Using ODS Statements to Create HTML Output    150

5.5 Using ODS Statements to Create RTF Output    152

5.6 Using ODS Statements to Create PRINTER Output    154

5.7 Customizing Titles and Footnotes    156

5.8 Customizing PROC PRINT Output with the STYLE= Option    158

5.9 Customizing PROC REPORT Output with the STYLE= Option    160

5.10 Customizing PROC TABULATE Output with the STYLE= Option    162

5.11 Adding Traffic-Lighting to Your Output    164

5.12 Selected Style Attributes    166



144 The Little SAS Book

5.1 Concepts of the Output Delivery System 

                                      You might think that procedures produce output. They don’t. Technically 
                                               procedures produce only data. Then they send that data to the Output 
                                            Delivery System (ODS) which determines where the output should go and 
                                     what it should look like when it gets there. That means the question to ask 
                               yourself is not whether you want to use ODS—you always use ODS. The 
                          question is whether to accept default output or choose something else. 

ODS is like a busy airport. Passengers arrive by car and bus. Once at the airport, passengers check 
baggage, pass security, eventually board a plane, and fly out to their destinations. In ODS, data are 
like passengers arriving from various procedures. ODS processes each set of data and sends it off 
to its proper destination. In fact, different types of ODS output are called destinations. What your 
data look like when they get to their destination is determined by templates. A template is a set of 
instructions telling ODS how to format your data. These two concepts—destinations and 
templates—are fundamental for understanding what you can do with ODS. 

Destinations Whenever you don’t specify a destination, your output will be sent, by default, to 
the listing. The listing is what you see in the Output window if you use the SAS windowing 
environment, or in the listing or output file if you use batch mode. Here are the major destinations:  

LISTING standard SAS output 
OUTPUT SAS output data set 
HTML Hypertext Markup Language 
RTF Rich Text Format 
PRINTER high resolution printer output

1

PS PostScript 
PCL Printer Control Language 
PDF Portable Document Format
MARKUP markup languages including XML  
DOCUMENT output document  

Two of these destinations, MARKUP and DOCUMENT, are new with SAS 9.  The MARKUP 
destination is a general purpose tool for creating output in markup formats. This includes XML 
(eXtensible Markup Language), HTML, LaTeX, CSV (comma-separated values), and many other 
formats where data can be thought of as separated by tags. The DOCUMENT destination, on the 
other hand, allows you to create a reusable output “document” that you can rerender for any 
destination. So, if your boss decides he really wants that report in PDF, not RTF, you can replay the 
output document without having to rerun the entire SAS program that created the data. With an 
output document, you can also rearrange, duplicate, or delete tables to further customize your 
output. 

1
 The PS, PCL, and PDF destinations are part of the PRINTER destination, and are discussed in section 5.4. 



Chapter 5: Enhancing Your Output with ODS 145

Style and table templates  Templates describe how ODS should format and present your 
data. The two most common types of templates are table templates and style templates (also called 
table definitions and style definitions). A table template specifies the basic structure of your output 
(which variable will be in the first column?), while a style template specifies how the output will 
look (will the headers be blue or red?). ODS combines the data produced by a procedure with a 
table template and together they are called an output object.  The output object is then combined 
with a style template and sent to a destination to create your final output

2
.

You can create your own table and style templates using the TEMPLATE procedure. However, 
PROC TEMPLATE’s syntax is rather arcane. Fortunately, there are other, easier, ways to control 
and modify output. The quickest and easiest way to change the look of your output is to use one of 
the many built-in style templates. To view a list of the style templates available on your system, 
submit the following PROC TEMPLATE statements, and look in the output window for the list: 

PROC TEMPLATE; 
   LIST STYLES; 
RUN;

 Some of the built-in style templates are 

BARETTSBLUE DEFAULT PRINTER SASWEB 
BEIGE D3D RTF SERIFPRINTER 
BRICK FANCYPRINTER SANSPRINTER STATDOC 
BROWN MINIMAL SASDOCPRINTER THEME 

Notice that RTF and PRINTER are names of both destinations and styles. Some styles work better 
with certain destinations than with others. DEFAULT is the default style for HTML output, RTF is 
the default style for RTF output, and PRINTER is the default style for output sent to the PRINTER 
destination. 

A few procedures, most notably PRINT, REPORT, and TABULATE, don’t have ready-made table 
templates. Instead, the syntax for these procedures acts like a custom table template. While all 
procedures that produce printable output allow you to use style templates to control the overall 
look of that output, these three procedures also allow you to do something special. With PRINT, 
REPORT, and TABULATE, you can use the STYLE= option directly in the procedure code to 
control individual features of your output without having to create a whole new style template. 

2 Style templates do not apply to the listing destination, which produces plain text output. 



146 The Little SAS Book

5.2    Tracing and Selecting Procedure Output 

When ODS receives data from a procedure, it combines that data with 
a table template. Together the data and corresponding table template 
are called an output object. For many procedures ODS produces just 
one output object, while for others it produces several. In addition, for 
most procedures when you use a BY statement, SAS produces one 
output object for each BY group. Every output object has a name. You 
can find the names of output objects using the ODS TRACE statement, 

and then use an ODS SELECT (or ODS EXCLUDE) statement to choose just the output objects 
you want. 

The ODS TRACE statement The ODS TRACE statement tells SAS to print information 
about output objects in your SAS log. There are two ODS TRACE statements: one to turn on the 
trace, and one to turn it off. Here is how to use these statements in a program: 

ODS TRACE ON; 
the PROC steps you want to trace go here 
RUN;
ODS TRACE OFF; 

Notice that the RUN statement comes before the ODS TRACE OFF statement. Unlike most other 
SAS statements, the ODS statement executes immediately—without waiting for a RUN, PROC, 
or DATA statement. If you put the ODS TRACE OFF statement before the RUN statement, then 
the trace would turn off before the procedure completes. 

Example Here are data about varieties of giant tomatoes. Each line of data includes the name 
of the variety, its color (red or yellow), the number of days from planting to harvest, and the 
weight (in pounds) of a typical tomato. 

Big Zac, red, 80, 5 
Delicious, red, 80, 3 
Dinner Plate, red, 90, 2 
Goliath, red, 85, 1.5 
Mega Tom, red, 80, 2 
Big Rainbow, yellow, 90, 1.5 
Pineapple, yellow, 85, 2 

The following program creates a data set named GIANT, and then traces PROC MEANS using 
ODS TRACE ON and ODS TRACE OFF statements:  

DATA giant; 
   INFILE 'c:\MyRawData\Tomatoes.dat' DSD; 
   INPUT Name :$15. Color $ Days Weight; 
* Trace PROC MEANS; 
ODS TRACE ON; 
PROC MEANS DATA = giant; 
   BY Color; 
RUN;
ODS TRACE OFF; 

If you run this program, you will see the following trace in your SAS log. Because it contains a BY 
statement, the MEANS procedure produces one output object for each BY group (red and yellow). 
Notice that these two output objects have the same name, label, and template, but different paths. 



Chapter 5: Enhancing Your Output with ODS 147

Output Added: 
-------------
Name:       Summary 
Label:      Summary statistics 
Template:   base.summary 
Path:       Means.ByGroup1.Summary 
-------------
NOTE: The above message was for the following by-group: Color=red 

Output Added: 
-------------
Name:       Summary 
Label:      Summary statistics 
Template:   base.summary 
Path:       Means.ByGroup2.Summary 
-------------
NOTE: The above message was for the following by-group: Color=yellow 

The ODS SELECT statement  Once you know the names of the output objects, you can 

use an ODS SELECT (or EXCLUDE) statement to choose just the output objects you want. The 
general form of an ODS SELECT statement is 

The PROC step with the output objects you want to select
ODS SELECT output-object-list;
RUN;

where output-object-list  is the name, label, or path of one or more output objects separated by 
spaces. By default, an ODS SELECT statement lasts for only one PROC step

1
, so by placing the 

SELECT statement after the PROC statement and before the RUN, you are sure to capture the 
correct output.  ODS EXCLUDE statements work the same way except you list output objects that 
you want to eliminate. 

Example This program runs PROC MEANS again using the Giant data set and an ODS 
SELECT statement to select just the first output object: Means.ByGroup1.Summary. 

PROC MEANS DATA = giant; 
   BY Color; 
   TITLE 'Red Tomatoes'; 
ODS SELECT Means.ByGroup1.Summary; 
RUN;

Here are the results containing just the first BY group.  

                                 Red Tomatoes                           1 

     ---------------------------- Color=red ----------------------------- 

                             The MEANS Procedure 

     Variable  N          Mean       Std Dev       Minimum       Maximum 
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
     Days      5    83.0000000     4.4721360    80.0000000    90.0000000 
     Weight    5     2.7000000     1.3964240     1.5000000     5.0000000 
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

1 To make your selection last longer, use the PERSIST option. See the SAS Help and Documentation for more information. 



148 The Little SAS Book

5.3    Creating SAS Data Sets from Procedure Output 

Sometimes you may want to put the results from a procedure into a 
SAS data set. Once the results are in a data set, you can merge them 
with another data set, create new variables based on the results, or 
use the results in other procedures. Some procedures have OUTPUT 
statements, or OUT= options, allowing you to save the results as a 
SAS data set. But with ODS you can save almost any part of 
procedure output as a SAS data set by sending it to the OUTPUT 

destination. First you use an ODS TRACE statement to determine the name of the output object 
you want. Then you use an ODS OUTPUT statement to send that object to the OUTPUT 
destination. 

The ODS OUTPUT statement Here is the general form of a basic ODS OUTPUT statement: 

ODS OUTPUT output-object = new-data-set;

where output-object  is the name, label or path of the piece of output you want to save, and new-data-
set is the name of the SAS data set you want to create.  

The ODS OUTPUT statement does not belong to either a DATA or PROC step, but you need to be 
careful where you put it in your program. The ODS OUTPUT statement opens a SAS data set and 
waits for the correct procedure output. The data set remains open until the next encounter with the 
end of a PROC step. Because the ODS OUTPUT statement executes immediately, it will apply to 
whatever PROC is currently being processed, or it will apply to the next PROC if there is not a 
current PROC. To ensure that you get the correct output, we recommend that you put the ODS 
OUTPUT statement after your PROC statement, and before the next PROC, DATA, or RUN 
statement. 

Example Here again are data about varieties of giant tomatoes. Each line of data includes the 
name of the variety, its color (red or yellow), the number of days from planting to harvest, and the 
weight (in pounds) of a typical tomato. 

Big Zac, red, 80, 5 
Delicious, red, 80, 3 
Dinner Plate, red, 90, 2 
Goliath, red, 85, 1.5 
Mega Tom, red, 80, 2 
Big Rainbow, yellow, 90, 1.5 
Pineapple, yellow, 85, 2 

Here is an excerpt from a SAS log showing the trace produced by PROC TABULATE. TABULATE 
produces one output object named Table. 

Output Added: 
-------------
Name:       Table 
Label:      Table 1 
Data Name:  Report 
Path:       Tabulate.Report.Table 
-------------

a
a
a
b
b

ODS
Output

a
b

3

2



Chapter 5: Enhancing Your Output with ODS 149

The following program reads the data, and uses an ODS OUTPUT statement to create a SAS data 
set named TABOUT from the Table output object. Then PROC PRINT prints the new data set. 

DATA giant; 
   INFILE 'c:\MyRawData\Tomatoes.dat' DSD; 
   INPUT Name :$15. Color $ Days Weight; 
PROC TABULATE DATA = giant; 
   CLASS Color; 
   VAR Days Weight; 
   TABLE Color ALL, (Days Weight) * MEAN; 
   TITLE 'Standard TABULATE Output'; 
ODS OUTPUT Table = tabout; 
RUN;
PROC PRINT DATA = tabout; 
   TITLE 'OUTPUT SAS Data Set from TABULATE'; 
RUN;

Here are the results showing two pieces of output. The first is the standard tabular result produced 
by PROC TABULATE. Below that is the TABOUT data set created by the ODS OUTPUT statement 
and printed by PROC PRINT. 

                      Standard TABULATE Output                     1 

            „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ† 
            ‚               ‚    Days    ‚   Weight   ‚ 
            ‚               ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 
            ‚               ‚    Mean    ‚    Mean    ‚ 
            ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 
            ‚Color          ‚            ‚            ‚ 
            ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰            ‚            ‚ 
            ‚red            ‚       83.00‚        2.70‚ 
            ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 
            ‚yellow         ‚       87.50‚        1.75‚ 
            ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 
            ‚All            ‚       84.29‚        2.43‚ 
            Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ 

                   Output Data Set from TABULATE                   2 

                                                  Days_     Weight_ 
 Obs    Color     _TYPE_    _PAGE_    _TABLE_      Mean       Mean 

  1     red         1          1         1       83.0000    2.70000 
  2     yellow      1          1         1       87.5000    1.75000 
  3                 0          1         1       84.2857    2.42857 



150 The Little SAS Book

5.4 Using ODS Statements to Create HTML Output 

When you send output to the HTML destination, you get files in Hypertext Markup Language 
(HTML) format. These files are ready to be posted on a Web site for viewing by your boss or 
colleagues, but HTML output has other uses too. It can be read into spreadsheets, and even 
printed or imported into word processors (though some formatting may change). To generate 
HTML files, all you need are two statements—one to open the HTML file, and one to close it.  

The ODS statement To send output to the HTML destination, use the ODS HTML 
statement. The general form of this statement is 

ODS HTML BODY = 'body-filename.html' options;

The body file contains the results of your procedures. The options FILE= and BODY= are 
synonymous. Using options, you can create other types of HTML files (contents, page, or frame), 
or choose a style for your output. 

CONTENTS= The contents file is a table of contents with links to the body file. The 
contents file will list each part of your output, and when you click on an 
entry in the table of contents, that part of the output will appear. 

PAGE= The page file is similar to the contents file, except instead of labeling the 
different parts of the output, it lists the output by page number. 

FRAME= The frame file allows you to view the body file and the contents or the 
page file at the same time in different areas, or frames, of the browser 
window. If you do not want either the contents or the page file, then you 
don’t need to create a frame file. 

STYLE= This option allows you to specify a style template. The default style is 
named DEFAULT.

You always want to create a body file, but the other files are optional. The following statement 
tells SAS to send output to the HTML destination, save a body file named AnnualReport.html, 
and use the D3D style. 

ODS HTML BODY = 'AnnualReport.html' STYLE = D3D; 

ODS statements do not belong to either DATA steps or PROC steps. However, if you put them in 
the wrong place, they won’t capture the output that you want. A good place to put the first ODS 
statement is just before the PROC step (or steps) whose output you wish to capture. 

Here is the second ODS statement which closes the HTML files.  

ODS HTML CLOSE;

Put this statement after the PROC step (or steps) whose output you wish to capture, and following a RUN 
statement. 

Example This example uses data about average lengths, in feet, of selected whales and sharks.

beluga   whale 15   dwarf    shark .5    sperm   whale 60 
basking  shark 30   humpback whale 50    whale   shark 40 
gray     whale 50   blue     whale 100   killer  whale 30 
mako     shark 12

The following program produces two pieces of output: one from the MEANS procedure and one 
from the PRINT procedure. There are two ODS statements in the program. The first ODS statement 



Chapter 5: Enhancing Your Output with ODS 151

creates four HTML files: body, contents, page, and frame. The last ODS statement closes the HTML 
files.

* Create the HTML files; 
ODS HTML BODY = 'c:\MyHTMLFiles\MarineBody.html' 
         CONTENTS = 'c:\MyHTMLFiles\MarineTOC.html'
         PAGE = 'c:\MyHTMLFiles\MarinePage.html' 
         FRAME = 'c:\MyHTMLFiles\MarineFrame.html';
DATA marine; 
   INFILE 'c:\MyRawData\Sealife.dat'; 
   INPUT Name $ Family $ Length @@; 
PROC MEANS DATA = marine; 
   CLASS Family; 
   TITLE 'Whales and Sharks'; 
PROC PRINT DATA = marine; 
RUN;
* Close the HTML files; 
ODS HTML CLOSE; 

Here is what the MarineFrame.html file looks like when viewed with a browser. Since no style was 
specified, SAS used the DEFAULT style. 



152 The Little SAS Book

5.5    Using ODS Statements to Create RTF Output 

Rich Text Format (RTF) was developed for tables in Microsoft Word. When you create RTF 
output, you can copy it into a Word document and edit or resize it like other Word tables. To 
send output to the RTF destination, you use the same statements as with HTML, but with some 
different options. 

The ODS statement The general form of the ODS statement to open RTF files is 

ODS RTF  FILE = 'filename.rtf' options;

Unlike HTML, there is only one kind of RTF file, a file containing procedure output. FILE= and 
BODY= are synonymous. These are some of the most commonly used options for RTF output: 

COLUMNS=n requests columnar output where n is the number of columns. 

BODYTITLE by default, titles and footnotes are put into Word headers and footers. 
This option, which is experimental starting with SAS 9.0, puts titles and 
footnotes in the main part of the RTF document. 

SASDATE by default, the date and time that appears at the top of RTF output is 
when the file was last opened or printed in Word. This option tells SAS to 
use the date and time when the current SAS session or job started 
running.

1

STYLE= specifies a style template. The default style is named RTF. 

The following statement tells SAS to send output to the RTF destination, save the results in a file 
named AnnualReport.rtf, and use the FANCYPRINTER style: 

ODS RTF  FILE = 'AnnualReport.rtf' STYLE = FANCYPRINTER; 

ODS statements do not belong to either DATA steps or PROC steps. However, if you put them in 
the wrong place, they won’t capture the output that you want. A good place to put the first ODS 
statement is just before the PROC step (or steps) whose output you wish to capture. 

Here is the second ODS statement which closes the RTF file. Put this statement after the PROC 
step (or steps) whose output you wish to capture, and following a RUN statement. 

ODS RTF CLOSE;

Example Here again are the data about average lengths, in feet, of selected whales and sharks.

beluga   whale 15   dwarf    shark .5    sperm   whale 60 
basking  shark 30   humpback whale 50    whale   shark 40 
gray     whale 50   blue     whale 100   killer  whale 30 
mako     shark 12

The following program produces output from the MEANS and PRINT procedures. There are two 
ODS statements in the program. The first ODS statement opens an RTF file. The last ODS statement 
closes the RTF file. 

1
 If you have the system option DTRESET turned on, and you use the ODS RTF SASDATE option, then SAS will use the date 

and time when the current job ran instead of when SAS started. 



Chapter 5: Enhancing Your Output with ODS 153

* Create an RTF file; 
ODS RTF FILE = 'c:\MyRTFFiles\Marine.rtf' BODYTITLE; 
DATA marine; 
   INFILE 'c:\MyRawData\Sealife.dat'; 
   INPUT Name $ Family $ Length @@; 
PROC MEANS DATA = marine; 
   CLASS Family; 
   TITLE 'Whales and Sharks'; 
PROC PRINT DATA = marine; 
RUN;
* Close the RTF file; 
ODS RTF CLOSE; 

Here is what the Marine.rtf file looks like when viewed in Microsoft Word. The output from each 
procedure appears on a separate page. 

Whales and Sharks 
The MEANS Procedure 

Analysis Variable : Length

Family
N

Obs N Mean Std Dev Minimum Maximum

shark 4 4 20.6250000 17.7265103 0.5000000 40.0000000

whale 6 6 50.8333333 29.0545464 15.0000000 100.0000000 

Whales and Sharks 

Obs Name Family Length 

1 beluga whale 15.0

2 dwarf shark 0.5

3 sperm whale 60.0

4 basking shark 30.0

5 humpback whale 50.0

6 whale shark 40.0

7 gray whale 50.0

8 blue whale 100.0

9 killer whale 30.0

10 mako shark 12.0



154 The Little SAS Book

5.6 Using ODS Statements to Create PRINTER Output 

The PRINTER destination produces output for high resolution printers, and it has some unique 
properties. By default, it sends output automatically to your printer, but it can also write files in 
PostScript, PCL, and PDF formats. Like other destinations, you need two statements to generate 
PRINTER output—one to open the destination and one to close it. 

The ODS statement The most basic form of the ODS statement to open the PRINTER 
destination is 

ODS PRINTER; 

If you use this simple statement, SAS will create whatever type of output your current system 
printer wants, and automatically print the output instead of saving it in a file. To save your 
output, add the FILE= option. Like RTF, there is only one kind of PRINTER file, a file containing 
procedure output. FILE= and BODY= are synonymous. Here are the general forms of statements 
to create specific kinds of output. 

Default printer: ODS PRINTER FILE = 'filename.extension' options;
PCL: ODS PCL FILE = 'filename.pcl' options;
PDF: ODS PDF FILE = 'filename.pdf' options;
PostScript: ODS PS  FILE = 'filename.ps' options;

Some of the options available for this destination are 

COLUMNS = n requests columnar output where n is the number of columns. 
STYLE =  specifies a style template. The default style is named PRINTER. 

The following statement tells SAS to create PostScript output, save the results in a file named 
AnnualReport.ps, and use the FANCYPRINTER style. 

ODS PS FILE = 'AnnualReport.ps' STYLE = FANCYPRINTER; 

ODS statements do not belong to either DATA steps or PROC steps. However, if you put them in 
the wrong place, they won’t capture the output that you want. A good place to put the first ODS 
statement is just before the PROC step (or steps) whose output you wish to capture. 

The general form of the ODS statement to close a PRINTER file is 

ODS destination-name CLOSE;

where destination-name is either PRINTER, PCL, PDF, or PS matching the destination name in 
your opening statement. Put this statement after the PROC step (or steps) whose output you 
wish to capture, and following a RUN statement. 

Example Here again are the data about average lengths, in feet, of selected whales and sharks.

beluga   whale 15   dwarf    shark .5    sperm   whale 60 
basking  shark 30   humpback whale 50    whale   shark 40 
gray     whale 50   blue     whale 100   killer  whale 30 
mako     shark 12

The following program produces output with the MEANS and PRINT procedures. There are two 
ODS statements in the program. The first ODS statement opens a PDF file. The last ODS statement 
closes the PDF file. 



Chapter 5: Enhancing Your Output with ODS 155

* Create the PDF file; 
ODS PDF FILE = 'c:\MyPDFFiles\Marine.pdf'; 
DATA marine; 
   INFILE 'c:\MyRawData\Sealife.dat'; 
   INPUT Name $ Family $ Length @@; 
PROC MEANS DATA = marine; 
   CLASS Family; 
   TITLE 'Whales and Sharks'; 
PROC PRINT DATA = marine; 
RUN;
* Close the PDF file; 
ODS PDF CLOSE; 

Here is what the report looks like when viewed in Adobe Acrobat. The output from each 
procedure appears on a separate page.  



156 The Little SAS Book

5.7 Customizing Titles and Footnotes 

In ODS output, your style template tells SAS how titles and footnotes should look. However, you 
can easily change the appearance of titles and footnotes by inserting a few simple options in your 
TITLE and FOOTNOTE statements.

1

The general form for a TITLE or FOOTNOTE statement is 

TITLE options 'text-string-1' options 'text-string-2' … options 'text-string-n';

FOOTNOTE options 'text-string-1' options 'text-string-2' … options 'text-string-n';

Text can be broken into pieces with different options applying to each piece. SAS will concatenate 
text strings just the way you type them, so be sure to include any necessary blanks. Each option 
applies to the text string that follows, and stays in effect until another value is specified for that 
option, or until the end of the statement. Here are the main options that you can choose: 

COLOR= specifies a color for the text 
BCOLOR= specifies a color for the background of the text  
HEIGHT= specifies the height of the text 
JUSTIFY= requests justification 
FONT= specifies a font for the text 
BOLD makes text bold 
ITALIC makes text italic 

Color  The COLOR= option specifies the color of the text. This statement 

TITLE COLOR=BLACK 'Black  ' COLOR=GRAY 'Gray  ' COLOR=LTGRAY 'Light Gray'; 

would produce this title: 

Black Gray Light Gray 
SAS supports hundreds of colors ranging from primary colors—red—to more esoteric colors—
LIGRPR (light grayish purplish red).These colors can be specified by name—BLUE—or by 
hexadecimal code—#0000FF.

 2
 However, other software used to view your output (such as a Web 

browser) may not support as many colors as SAS. So, it’s often a good idea to stick to basic colors. 
These colors are generally safe: BLACK, BLUE, BROWN, CHARCOAL, CREAM, CYAN, GOLD, 
GRAY, GREEN, LILAC, LIME, MAGENTA, MAROON, OLIVE, ORANGE, PINK, PURPLE, RED, 
ROSE, SALMON, STEEL, TAN, VIOLET, WHITE, and YELLOW.  

Background color  The BCOLOR= option specifies a background color. This statement uses an 

RGB hexidecimal code: 

TITLE BCOLOR='#C0C0C0' 'This Title Has a Gray Background'; 

and produces this title: 

This Title Has a Gray Background 

1
If you are using Release 8.2 of SAS and you issue a GOPTIONS statement, it may override formatting specified in your style 

templates, and in TITLE and FOOTNOTE statements.
2

SAS recognizes at least a half a dozen different naming schemes for specifying colors. See “Color-naming Schemes” in the 
SAS/GRAPH section of the SAS Help and Documentation for details about what colors are available and how to specify them. 
Names of colors and fonts need quotation marks if the name is longer than 8 characters or contains embedded spaces. RGB 
hexadecimal codes beginning with a pound sign also require quotation marks.



Chapter 5: Enhancing Your Output with ODS 157

You can choose among the same colors as with the COLOR= option.  

Height  To change the height of the text, use the HEIGHT= option where the value of HEIGHT is 
a number expressed in points, inches, or centimeters. This statement 

TITLE HEIGHT=12pt 'Small  ' HEIGHT=.25in 'Medium  ' HEIGHT=1cm 'Large'; 

would produce this title: 

Small Medium Large
Justification  You can control justification of text using the JUSTIFY= option which can have the 

values LEFT, CENTER, or RIGHT. You can even mix these options within a single statement. This 
statement  

TITLE JUSTIFY=LEFT 'Left ' JUSTIFY=CENTER 'vs. ' JUSTIFY=RIGHT 'Right'; 

would produce this title: 

Left  vs. Right

Font  Use the FONT= option to specify a font. This statement 

TITLE 'Default    ' FONT=Arial 'Arial    '
   FONT='Times New Roman' 'Times New Roman    ' FONT=Courier 'Courier'; 

would produce this title: 

Default Arial Times New Roman    Courier
The particular fonts available to you depend on your operating environment and hardware. 
Courier, Arial, Times, and Helvetica work in most situations. 

Bold and italic  By default, titles and footnotes are both bold and italic. When you change the 
font, you also turn off the bold and italic features. You can turn them on by using the BOLD and 
ITALIC options. There is no option to turn off boldness and italics, so if you wish to turn them off, 
use the FONT= option. Here are the three options together: 

TITLE FONT=Courier 'Courier  '
   BOLD 'Bold  ' BOLD ITALIC 'Bold and Italic'; 

This statement produces this title: 

Courier Bold Bold and Italic 



158 The Little SAS Book

5.8    Customizing PROC PRINT Output with the STYLE= Option 

If you want to change the overall look of any output, you can use a different style template by 
specifying it in a STYLE= option in your ODS statement.  But what if you want to change the 
appearance of just the headers, or just one column of your output?  Well, you’re in luck! The reporting 
procedures, PRINT, REPORT, and TABULATE allow you to change the style of various parts of the 
table that these procedures produce using the STYLE= option in the procedure’s statements.

1

The general form of the STYLE= option in the PROC PRINT statement is 

PROC PRINT STYLE(location-list) = {style-attribute = value};

The location-list indicates which parts of the table should take on the style, the style-attribute indicates 
what attribute you want to change, and the value is the value of the attribute.   (See section 5.12 for a 
table of attributes and possible values.)  For example, the following statement says that the DATA 
location should have the BACKGROUND style attribute set to the value PINK. 

PROC PRINT STYLE(DATA) = {BACKGROUND = pink}; 

You can have several STYLE= options on one PROC PRINT statement, and you can have the same 
style apply to several locations.  The following shows some of the locations you can specify and 
which parts of the table they represent. 

Location Table region affected 

DATA all the data cells 

HEADER the column headers (variable names) 

OBS the data in the OBS column or ID column if using an ID statement 

OBSHEADER the header for the OBS or ID column 

TOTAL the data in the totals row produced by a SUM statement 

GRANDTOTAL the data for the grand total produced by a SUM statement 

By placing the STYLE= option in the PROC PRINT statement, the entire table is affected by the 
STYLE.  For  example, if you specify HEADER as the location, then all of the column headers will 
have the new style.  But what if you just want to change the header of just one column?  Then you can 
put the STYLE= option in the VAR statement as follows: 

VAR variable-list / STYLE(location-list) = {style-attribute = value};

Only the variables listed in the VAR statement will have the specified style.  If you want different 
variables to have different styles, then use multiple VAR statements.  Only the DATA and 
HEADER locations are valid on the VAR statement.  If you leave out the location, then both the 
data and the header will have the style (you cannot leave out the location on the PROC PRINT 
statement).

1
To change the style of output from other procedures, you need to create a new style template using PROC TEMPLATE, then 

apply the new style by using a STYLE= option in your ODS statement.  See the SAS Help and Documentation for more 
information on the TEMPLATE procedure.



Chapter 5: Enhancing Your Output with ODS 159

Example The following data are the Olympic gold medal winners for the women’s 5000 meter 
speed skating event.  The Olympic year is followed by the skater’s name, country, time, and record 
(WR is world record) if any.

1988,Yvonne van Gennip,NED,7:14.13,WR 
1992,Gunda Niemann,GER,7:31.57
1994,Claudia Pechstein,GER,7:14.37
1998,Claudia Pechstein,GER,6:59.61,WR 
2002,Claudia Pechstein,GER,6:46.91,WR 

The following program reads the data and uses PROC PRINT to create an HTML file using the 
DEFAULT style template.  The resulting output is shown on the right.

ODS HTML FILE='c:\MyHTML\results.htm'; 
DATA skating; 
  INFILE 'c:\MyData\women.csv' DSD MISSOVER; 
  INPUT Year Name :$20. Country $
        Time $ Record $; 
PROC PRINT DATA=skating; 
  TITLE 'Women''s 5000 Meter Speed Skating'; 
  ID Year; 
RUN;
ODS HTML CLOSE;

This program also uses the DEFAULT style template but the STYLE= option on the PROC PRINT 
statement changes the background of all the data cells in the table to white. 

ODS HTML FILE='c:\MyHTML\results2.htm'; 
PROC PRINT DATA=skating
     STYLE(DATA)={BACKGROUND=white}; 
  TITLE 'Women''s 5000 Meter Speed Skating'; 
  ID Year; 
RUN;
ODS HTML CLOSE;

This program adds VAR statements to change the font style and the font weight of just the Record 
column to italic and bold. 

ODS HTML FILE='c:\MyHTML\results3.htm'; 
PROC PRINT DATA=skating
     STYLE(DATA)={BACKGROUND=white}; 
  TITLE 'Women''s 5000 Meter Speed Skating'; 
  VAR Name Country Time; 
  VAR Record/STYLE(DATA)= 
       {FONT_STYLE=italic FONT_WEIGHT=bold}; 
  ID Year; 
RUN;
ODS HTML CLOSE; 



160 The Little SAS Book 

5.9 Customizing PROC REPORT Output with the STYLE= Option 

Using the STYLE= option in PROC REPORT is similar to the PRINT procedure because you have 
to specify a location. The general form of the STYLE= option in the PROC REPORT statement is 

PROC REPORT STYLE(location-list) = {style-attribute = value};

where location-list specifies the parts of the table that should take on the style, style-attribute is the 
characteristic you wish to change such as text color or font, and value is the way you want the 
style-attribute to be such as red or courier. (See section 5.12 for a table of possible style-attributes 
and values.) For example, if you created a report from a SAS data set named MYSALES and you 
wanted the column headers to have a green background, then you could use this statement: 

PROC REPORT DATA = mysales STYLE(HEADER) = {BACKGROUND = green}; 

You can specify more than one location in a single STYLE= option, and you can have several 
STYLE= options in one PROC REPORT statement. Here are some of the locations whose 
appearance you can control in PROC REPORT: 

Location   Table region affected 

HEADER column headings 

COLUMN data cells 

SUMMARY totals created by SUMMARIZE option in BREAK or RBREAK statements 

If you put a STYLE= option in a PROC REPORT statement, then it will affect the whole table, for 
example, all the column headings, all the data cells, or all the summary breaks. You can change 
part of a report by using the STYLE= option in other statements. To specify a style for a 
particular variable, put the STYLE= option in a DEFINE statement. This statement tells SAS to 
use Month as a group variable, and make the background BLUE for both the data and header: 

DEFINE Month / GROUP STYLE(HEADER COLUMN) = {BACKGROUND = blue}; 

To specify a style for particular summary breaks, use the STYLE= option in a BREAK or 
RBREAK statement. These statements tell SAS to use a red background for summary breaks for 
each value of Month, and an orange background for the overall report summary. 

BREAK AFTER Month / SUMMARIZE STYLE(SUMMARY) = {BACKGROUND = red}; 
RBREAK AFTER / SUMMARIZE STYLE(SUMMARY) = {BACKGROUND = orange}; 

Example The following data show women who have won gold medals in Olympic speed 
skating in more than one year. The variables are name, country, year, and the number of gold 
medals won in that year. Each line contains two records.  

Lydia Skoblikova, URS, 1960, 2, Lydia Skoblikova, URS, 1964, 4 
Karin Enke, GDR, 1980, 1, Karin Enke, GDR, 1984, 2 
Christa Rothenburger, GDR, 1984, 1, Christa Rothenburger, GDR, 1988, 1 
Bonnie Blair, USA, 1988, 1, Bonnie Blair, USA, 1992, 2 
Gunda Nieman, GDR, 1992, 2, Bonnie Blair, USA, 1994, 2 
Claudia Pechstein, GER, 1994, 1, Gunda Nieman, GDR, 1998, 1 
Claudia Pechstein, GER, 1998, 1, Catriona LeMay, CAN, 1998, 1 
Claudia Pechstein, GER, 2002, 2, Catriona LeMay, CAN, 2002, 1 



Chapter 5: Enhancing Your Output with ODS 161

The following program reads the data and uses PROC 
REPORT to create an HTML file using the DEFAULT 
style template. The resulting output is shown on the 
right. 

DATA skating; 
   INFILE 'c:\MyRawData\speed.dat' DSD; 
   INPUT Name :$20. Country $
      Year NumGold @@; 

ODS HTML FILE='c:\MyHTML\speed.htm'; 
PROC REPORT DATA = skating NOWINDOWS; 
   COLUMN Name Country NumGold, SUM; 
   DEFINE Name / GROUP; 
   DEFINE Country / GROUP; 
   TITLE 'Olympic Women''s ' 
      'Speed Skating'; 
RUN;
ODS HTML CLOSE; 

The next program also uses the DEFAULT style 
template, but adds a STYLE= option in the PROC 
REPORT statement to change the background color of 
all the data cells and to center the data.  

* STYLE= option in PROC statement; 
ODS HTML FILE='c:\MyHTML\speed2.htm'; 
PROC REPORT DATA = skating NOWINDOWS
   STYLE(COLUMN) =
   {BACKGROUND = white JUST = center}; 
   COLUMN Name Country NumGold, SUM; 
   DEFINE Name / GROUP; 
   DEFINE Country / GROUP; 
   TITLE 'Olympic Women''s ' 
      'Speed Skating'; 
RUN;
ODS HTML CLOSE; 

Now the STYLE= option has been moved to a DEFINE 
statement so that just one column, Name, is affected. 

* STYLE= option in DEFINE statement; 
ODS HTML FILE='c:\MyHTML\speed3.htm'; 
PROC REPORT DATA = skating NOWINDOWS; 
   COLUMN Name Country NumGold, SUM; 
   DEFINE Name / GROUP
      STYLE(COLUMN) =
      {BACKGROUND = white JUST = center}; 
   DEFINE Country / GROUP; 
   TITLE 'Olympic Women''s ' 
      'Speed Skating'; 
RUN;
ODS HTML CLOSE; 



162 The Little SAS Book

5.10    Customizing PROC TABULATE Output with the STYLE= 
Option

Using the STYLE= option in the TABULATE procedure, you can customize the look of the table 
that  TABULATE produces. There are a number of different style attributes you can change, 
affecting things like color and font of text. (See section 5.12 for a table of style attributes and their 
possible values.)  The part of the table affected depends on where you place the STYLE= option.  
The following shows some of the TABULATE statements that accept the STYLE= option and which 
parts of the table are affected: 

Statement Table region affected 
PROC TABULATE all the data cells  
CLASS class variable name headings  
CLASSLEV class level value headings  
TABLE (crossed with elements)

1
 element’s data cell  

VAR analysis variable name headings

PROC TABULATE statement  If you place the STYLE= option on the PROC TABULATE 
statement, all the table’s data cells will have the style.  For example, if you wanted all the data cells 
in your table created from the MYSALES SAS dataset to have a yellow background, then you 
would use the following statement: 

PROC TABULATE DATA = mysales STYLE = {BACKGROUND = yellow}; 

TABLE statement  If you want some of the data cells to have a different style from the rest, 
then you need to add the STYLE= option to the TABLE statement and cross the style with the 
variable or keyword you want to change (similar to having different formats for different parts of 
the table discussed in section 4.16). Any style assigned in a TABLE statement will override styles 
assigned in the PROC TABULATE statement. For example the following TABLE statement 
produces a table where the data cells in the ALL column have a red background: 

TABLE City, Month ALL*{STYLE = {BACKGROUND = red}}; 

CLASSLEV, VAR, and CLASS statements  The CLASSLEV, VAR, and CLASS 
statements all require that you place the STYLE= option after a slash (/).  Any variable that appears 
in a CLASSLEV statement must also appear in a CLASS statement. For example, suppose you had 
a table with a class variable MONTH, and you wanted all the MONTH level headings (Jan, Feb, 
Mar…) to have a foreground color of green, then you would use the CLASSLEV statement as 
follows:

CLASSLEV Month / STYLE = {FOREGROUND = green};

Example  The following data are for men’s speed skating events in the winter Olympics.  The 
Olympic year is followed by the event and the record for that event.  OR is an Olympic record, WR 
is a world record, and None indicates that neither an Olympic or world record was set that year. 
Note that there are four observations per line of data. 

1 You can also use STYLE= as an option on the TABLE statement and then it affects the structural parts of the table (such as 
borders and cell widths).  See the SAS Help and Documentation for more information.



Chapter 5: Enhancing Your Output with ODS 163

1992 m500 None 1994 m500 OR 1998 m500 OR 2002 m500 OR 
1992 m1000 None 1994 m1000 WR 1998 m1000 OR 2002 m1000 WR 
1992 m1500 None 1994 m1500 WR 1998 m1500 WR 2002 m1500 WR 
1992 m5000 None 1994 m5000 WR 1998 m5000 WR 2002 m5000 WR 
1992 m10000 None 1994 m10000 WR 1998 m10000 WR 2002 m10000 WR 

The following program reads the data into a SAS data set named SKATING.  The TABLE statement 
in the TABULATE procedure sets up a table which has the Olympic year as rows and the record 
(None, OR, or WR) as columns.  The Year and N headings are eliminated by setting them equal to a 
null string (='') in the TABLE statement.  The ODS statements create an HTML file using the 
DEFAULT style. The result is shown on the right. 

ODS HTML FILE='c:\MyHTML\table.htm'; 
DATA skating; 
  INFILE 'c:\MyData\records.dat'; 
  INPUT Year  Event $ Record $ @@; 
PROC TABULATE DATA=skating; 
  CLASS Year Record; 
  TABLE Year='',Record*N=''; 
  TITLE 'Men''s Speed Skating'; 
  TITLE2 'Records Set at Olympics'; 
RUN;
ODS HTML CLOSE; 

Now, suppose we decide that the numbers in the data 
cells just don’t stand out enough, and it would be nice to 
have the numbers centered in the cells.  We can do this by 
using the STYLE= option in the PROC TABULATE 
statement and setting the JUST attribute to center and the 
BACKGROUND attribute to white as follows: 

ODS HTML FILE='c:\MyHTML\table2.htm'; 
PROC TABULATE DATA=skating 
     STYLE={JUST=center BACKGROUND=white}; 
  CLASS Year Record; 
  TABLE Year='',Record*N=''; 
  TITLE 'Men''s Speed Skating'; 
  TITLE2 'Records Set at Olympics'; 
RUN;
ODS HTML CLOSE;

This table still uses the DEFAULT style template, but the 
style of the data cells has been changed to produce the 
desired result. 



164 The Little SAS Book

               5.11    Adding Traffic-Lighting to Your Output 

Traffic-lighting  is a feature that allows you to control the style of cells in the table based 
on the value of the cell.  This way you can draw attention to important values in your 
report, or highlight relationships between values.  Traffic-lighting can be used in any of 
the three reporting procedures: PRINT, REPORT, and TABULATE.

To implement traffic-lighting you need to do two things.  First, create a user-defined 
format specifying different values for the style attribute you want to change over the 
range in data values.  (See section 5.12 for a table of style attributes and possible values.)  
Then, set the style attribute equal to the format you defined in the STYLE= option.   For 
example, if you had a FORMAT procedure that created a format as follows:

PROC FORMAT; 
  VALUE posneg 
     LOW -< 0 = ‘red’ 
     0-HIGH = ‘black’; 

Then in a VAR statement in a PRINT procedure, set the value of the attribute equal to the format in 
the STYLE= option as follows: 

VAR Balance / STYLE = {FOREGROUND = posneg.}; 

Now all the data cells for the variable Balance will have red numbers if they are negative, and black 
numbers if they are positive. 

Example  The following data are the top five finishers in the men’s 5000 meter speed skating 
event at the 2002 Winter Olympics. The skater’s place is followed by his name, country, and time in 
seconds. 

1,Jochem Uytdehaage, Netherlands,374.66 
2,Derek Parra, United States,377.98 
3,Jens Boden, Germany,381.73 
4,Dmitry Shepel, Russia,381.85 
5,KC Boutiette, United States,382.97 

The following program reads and prints the data using PROC PRINT and the resulting HTML file  
using the DEFAULT style is shown on the right. 

ODS HTML FILE='c:\MyHTML\mens.html'; 
DATA results; 
  INFILE 
     'c:\MyRawData\mens5000.dat' DSD; 
  INPUT Place Name :$20. 
        Country :$15. Time ; 
PROC PRINT DATA=results; 
  ID Place;
  TITLE 'Men''s 5000m Speed Skating'; 
  TITLE2 '2002 Olympic Results'; 
RUN;
ODS HTML CLOSE; 

To give an idea of how these times compare with previous times skaters set for this event, we can 
use traffic lighting.  Prior to the 2002 Olympics, the world record for the 5000 meter speed skating 
was 378.72 seconds and the Olympic record was 382.20 seconds. To show which skaters skated 



Chapter 5: Enhancing Your Output with ODS 165

faster than these records, we first create a user-defined format, REC, where the color red is 
assigned to times less than the world record, orange is assigned to times less than the Olympic 
record, and the other times are assigned white.  Next, we add two VAR statements to the PROC 
PRINT.  The second VAR statement uses the STYLE= option to assign a style to the Time variable.  
Now instead of setting the BACKGOUND attribute equal to a constant value, we set it equal to the 
format we just defined, REC. 

ODS HTML FILE='c:\MyHTML\mens2.html'; 
PROC FORMAT; 
  VALUE rec 0 -< 378.72 ='red' 
            378.72 -< 382.20 = 'orange' 
            382.20 - HIGH = 'white'; 
PROC PRINT DATA=results; 
  ID Place; 
  VAR Name Country; 
  VAR Time/STYLE={BACKGROUND=rec.}; 
  TITLE 'Men''s 5000m Speed Skating'; 
  TITLE2 '2002 Olympic Results'; 
RUN;
ODS HTML CLOSE;

Here is the output showing the different color backgrounds based on the value of the Time 
variable.  Those skaters who broke the previous world record have red backgrounds, those who 
broke the Olympic record show an orange background, and the 5

th
 skater who didn’t break any 

records shows a white background. (The colors appear here as shades of gray.)  



166 The Little SAS Book

5.12    Selected Style Attributes 

Attribute Description Possible Values 

BACKGROUND Specifies the background color of the 

table or cell. 

Any valid color1

BACKGROUNDIMAGE Specifies a background image to be 

used for the table or cell. Not valid 

for RTF. 

Any GIF, JPEG, or PNG image 

file2

FLYOVER Specifies the pop-up text displayed 

when the cursor is held over the text 

(HTML) or if you double-click on the 

text (PDF).

Any text string enclosed in 

quotation marks 

FONT_FACE Specifies the font to use for the text in 

the cells. 

Any valid font (Most devices 

support Times, Courier, Arial, 

and Helvetica) 

FONT_SIZE Specifies the relative size of the font 

for the text in cells.3

1 to 7 

FONT_STYLE Specifies the style of the font used in 

the cells. 

ITALIC, ROMAN, or SLANT 

(Italic and slant may map to the 

same font) 

FONT_WEIGHT Specifies the weight of the font used 

in the cells. 

BOLD, MEDIUM, or LIGHT 

FOREGROUND Specifies the color of the text in the 

cells.

Any valid color1

JUST Specifies the justification of the text 

in the cells. 

R|RIGHT, C|CENTER, L|LEFT, 

or D (decimal) 

PRETEXT or 

POSTTEXT 

Specifies text that goes either before 

(PRETEXT) or after (POSTTEXT) the 

text in the cells. 

Any text string enclosed in 

quotation marks 

PREIMAGE or 

POSTIMAGE 

Specifies an image that will be 

inserted either before (PREIMAGE) 

or after (POSTIMAGE) the text in the 

cells. 

Any GIF, JPEG or PNG image 

file (JPEG and PNG only for 

RTF)2

URL Specifies the URL to link to from the 

text in the cell. HTML, PDF, and RTF 

only. 

Any URL 

1 There are several ways that you can specify color and these are discussed in the SAS/GRAPH documentation.  If you want an 
exact color, you may use the RGB notation (e.g. #00FF00 is green), or if you want to use colors by name, then the following are
some colors you may choose from: black, blue, brown, charcoal, cream, cyan, gold, gray, green, lilac, lime, magenta, maroon, 
olive, orange, pink, purple, red, rose, salmon, steel, tan, violet, white, and yellow.



Chapter 5: Enhancing Your Output with ODS 167

Attribute STYLE= code Result 

BACKGROUND STYLE(DATA)=
   {BACKGROUND=white}; 

BACKGROUNDIMAGE STYLE(DATA)=
   {BACKGROUNDIMAGE=
'c:\MyImages\snow.gif'};

FLYOVER STYLE(DATA)=
  {FLYOVER='Try it!'}; 

FONT_FACE STYLE(DATA)=
   {FONT_FACE=courier}; 

FONT_SIZE STYLE(DATA)=
   {FONT_SIZE=2}; 

FONT_STYLE STYLE(DATA)=
   {FONT_STYLE=italic}; 

FONT_WEIGHT STYLE(DATA)=
   {FONT_WEIGHT=bold}; 

FOREGROUND STYLE(DATA)=
   {FOREGROUND=white}; 

JUST STYLE(DATA)=
   {JUST=right}; 

PRETEXT or 
POSTTEXT 

STYLE(DATA)=
   {POST_TEXT=' is fun'}; 

PREIMAGE or 
POSTIMAGE 

STYLE(DATA)=
   {PREIMAGE='SS2.gif'}; 

URL STYLE(DATA)=
{URL='http://skating.org'}; 

2 For HTML, if you use a simple file name, then the SAS internal browser may not be able to find the file.  If you use a complete
path, then edit the HTML file to reflect any changes if you move the files to a new location. 
3 For some destinations, you can specify size in units of measure: cm, in, mm, pt, px (pixels).  For example, if you want text that
is 24 points, then you would specify FONT_SIZE=24pt.



6

From the SAS L Listserv, May 6, 1994. Reprinted by permission of the author.

‘‘
’’

I usually say, ‘The computer
is the dumbest thing on campus.
It does exactly what you tell it to;
not necessarily what you want.
Logic is up to you.’

NECIA A. BLACK, R.N., PH.D.



CHAPTER 6

Modifying and Combining SAS� Data Sets 

6.1 Modifying a Data Set Using the SET Statement    170

6.2 Stacking Data Sets Using the SET Statement    172

6.3 Interleaving Data Sets Using the SET Statement    174

6.4 Combining Data Sets Using a One-to-One Match Merge    176

6.5 Combining Data Sets Using a One-to-Many Match Merge    178

6.6 Merging Summary Statistics with the Original Data    180

6.7 Combining a Grand Total with the Original Data    182

6.8 Updating a Master Data Set with Transactions    184

6.9 Using SAS Data Set Options    186

6.10 Tracking and Selecting Observations with the IN= Option    188

6.11 Writing Multiple Data Sets Using the OUTPUT Statement    190

6.12 Making Several Observations from One Using the OUTPUT Statement    192

6.13 Changing Observations to Variables Using PROC TRANSPOSE    194

6.14 Using SAS Automatic Variables    196



170 The Little SAS Book

6.1 Modifying a Data Set Using the SET Statement 

The SET statement in the DATA step allows you to read a SAS data 
set so you can add new variables, create a subset, or otherwise 
modify the data set. If you were short on disk space, for example, 
you might not want to store your computed variables in a 
permanent SAS data set. Instead, you might want to calculate them 

as needed for analysis. Likewise, to save processing time, you might want to create a subset of a 
SAS data set when you only want to look at a small portion of a large data set. The SET statement 
brings a SAS data set, one observation at a time, into the DATA step for processing.

1

To read a SAS data set, start with the DATA statement specifying the name of the new data set. 
Then follow with the SET statement specifying the name of the old data set you want to read. If 
you don’t want to create a new data set, you can specify the same name in the DATA and SET 
statements. Then the results of the DATA step will overwrite the old data set named in the SET 
statement.

2
 The following shows the general form of the DATA and SET statements: 

DATA new-data-set;
   SET data-set;

Any assignment, subsetting IF, or other DATA step statements usually follow the SET state-
ment. For example, the following creates a new data set, FRIDAY, which is a replica of the 
SALES data set, except FRIDAY has only the observations for Fridays, and it has an additional 
variable, Total: 

DATA friday; 
   SET sales; 
   IF Day = 'F'; 
   Total = Popcorn + Peanuts; 
RUN;

Example The Fun Times Amusement Park is collecting data about their train ride. They can 
add more cars on the train during peak hours to shorten the wait, or take them off when they’re 
not needed to save fuel costs. The raw data file contains data for the time of day, the number of 
cars on the train, and the total number of people on the train: 

10:10  6 21 
12:15 10 56 
15:30 10 25 
11:30  8 34 
13:15  8 12 
10:45  6 13 
20:30  6 32 
23:15  6 12 

1
 The MODIFY statement also allows you to modify a single data set. See the SAS Help and Documentation for more 

information. 

2
 By default, SAS will not overwrite a data set in a DATA step that has errors.



Chapter 6: Modifying and Combining SAS Data Sets 171

The data are read into a permanent SAS data set, TRAINS, stored in the MySASLib directory on the 
park’s central computer by means of the following program:

* Create permanent SAS data set trains; 
DATA 'c:\MySASLib\trains'; 
   INFILE 'c:\MyRawData\Train.dat'; 
   INPUT Time TIME5. Cars People; 
RUN;

This example uses direct referencing to tell SAS where to store the permanent SAS data set, but you 
could use a LIBNAME statement instead. 

Each train car holds a maximum of six people. After collecting the data, the Fun Times manage-
ment decides they want to know the average number of people per car on each ride. This number 
was not calculated in the original DATA step which created the permanent SAS data set, but can be 
calculated by the following program: 

* Read the SAS data set trains with a SET statement; 
DATA averagetrain; 
   SET 'c:\MySASLib\trains';
   PeoplePerCar = People / Cars; 
PROC PRINT DATA = averagetrain; 
   TITLE 'Average Number of People per Train Car'; 
   FORMAT Time TIME5.; 
RUN;

The DATA statement defines a new temporary SAS data set named AVERAGETRAIN. Then the 
SET statement reads the permanent SAS data set TRAINS, and an assignment statement creates the 
new variable PeoplePerCar.  Here are the results of the PROC PRINT: 

                  Average Number of People per Train Car             1 

                                                    People 
                 Obs     Time    Cars    People     PerCar 

                  1     10:10      6       21      3.50000 
                  2     12:15     10       56      5.60000 
                  3     15:30     10       25      2.50000 
                  4     11:30      8       34      4.25000 
                  5     13:15      8       12      1.50000 
                  6     10:45      6       13      2.16667 
                  7     20:30      6       32      5.33333 
                  8     23:15      6       12      2.00000 



172 The Little SAS Book

2
5
6
1
4

2
5
6

1
4

+

6.2 Stacking Data Sets Using the SET Statement 

The SET statement with one SAS data set allows you to read and modify the 
data. With two or more data sets, in addition to reading and modifying the 
data, the SET statement concatenates or stacks the data sets one on top of the 
other. This is useful when you want to combine data sets with all or most of 
the same variables but different observations. You might, for example, have 
data from two different locations or data taken at two separate times, but you 
need the data together for analysis.  

In a DATA step, first specify the name of the new SAS data set in the DATA 
statement, then list the names of the old data sets you want to combine in the 

                                SET statement: 

             DATA new-data-set;
                SET data-set-1 data-set-n;

The number of observations in the new data set will equal the sum of the number of observations 
in the old data sets. The order of observations is determined by the order of the list of old data 
sets. If one of the data sets has a variable not contained in the other data sets, then the obser-
vations from the other data sets will have missing values for that variable. 

Example The Fun Times Amusement Park has two entrances where they collect data about 
their customers. The data file for the south entrance has an S (for south) followed by the 
customers’ Fun Times pass numbers, the sizes of their parties, and their ages. The file for the 
north entrance has an N (for north), the same data as the south entrance, plus one more column 
for the parking lot where they left their cars (the south entrance has only one lot). The following 
shows samples of the two data files: 

Data for South Entrance Data for North Entrance 
 S 43 3 27 N 21 5 41 1 
 S 44 3 24 N 87 4 33 3 
 S 45 3  2 N 65 2 67 1 
  N 66 2  7 1  

The first two parts of the following program read the raw data for the south and north entrances 
into SAS data sets and print them to make sure they are correct. The third part combines the two 
SAS data sets using a SET statement. The same DATA step creates a new variable, AmountPaid, 
which tells how much each customer paid based on their age. This final data set is printed using 
PROC PRINT: 

DATA southentrance; 
   INFILE 'c:\MyRawData\South.dat'; 
   INPUT Entrance $ PassNumber PartySize Age; 
PROC PRINT DATA = southentrance; 
   TITLE 'South Entrance Data'; 

DATA northentrance; 
   INFILE 'c:\MyRawData\North.dat'; 
   INPUT Entrance $ PassNumber PartySize Age Lot; 
PROC PRINT DATA = northentrance; 
   TITLE 'North Entrance Data'; 



Chapter 6: Modifying and Combining SAS Data Sets 173

* Create a data set, both, combining northentrance and southentrance; 
* Create a variable, AmountPaid, based on value of variable Age; 
DATA both; 
   SET southentrance northentrance;
   IF Age = . THEN AmountPaid = .; 
      ELSE IF Age < 3  THEN AmountPaid = 0; 
      ELSE IF Age < 65 THEN AmountPaid = 35; 
      ELSE AmountPaid = 27; 
PROC PRINT DATA = both; 
   TITLE 'Both Entrances'; 
RUN;

The following are the results of the three PRINT procedures in the program. Notice that the final 
data set has missing values for the variable Lot for all the observations which came from the south 
entrance. Because the variable Lot was not in the SOUTHENTRANCE data set, SAS assigned 
missing values to those observations. 

                            South Entrance Data                       1 

                                     Pass     Party 
                 Obs    Entrance    Number     Size    Age 

                  1        S          43        3       27 
                  2        S          44        3       24 
                  3        S          45        3        2 

                            North Entrance Data                       2 

                                 Pass     Party 
             Obs    Entrance    Number     Size    Age    Lot 

              1        N          21        5       41     1 
              2        N          87        4       33     3 
              3        N          65        2       67     1 
              4        N          66        2        7     1 

                              Both Entrances                          3 

                            Pass     Party                  Amount 
        Obs    Entrance    Number     Size    Age    Lot     Paid 

         1        S          43        3       27     .       35 
         2        S          44        3       24     .       35 
         3        S          45        3        2     .        0 
         4        N          21        5       41     1       35 
         5        N          87        4       33     3       35 
         6        N          65        2       67     1       27 
         7        N          66        2        7     1       35 



174 The Little SAS Book

1
2
4
5
6

2
5
6

1
4

+

6.3 Interleaving Data Sets Using the SET Statement 

The previous section explained how to stack data sets that have all or most of 
the same variables but different observations. However, if you have data sets 
that are already sorted by some important variable, then simply stacking the 
data sets may unsort the data sets. You could stack the two data sets and then 
re-sort them using PROC SORT. But if your data sets are already sorted, it is 
more efficient to preserve that order, than to stack and re-sort. All you need to 
do is use a BY statement with your SET statement. Here’s the general form: 

   DATA new-data-set;
      SET data-set-1 data-set-n;

 BY variable-list;

In a DATA statement, you specify the name of the new SAS data set you want to create. In a SET 
statement, you list the data sets to be interleaved. Then in a BY statement, you list one or more 
variables that SAS should use for ordering the observations. The number of observations in the 
new data set will be equal to the sum of the number of observations in the old data sets. If one of 
the data sets has a variable not contained in the other data sets, then values of that variable will 
be set to missing for observations from the other data sets. 

Before you can interleave observations, the data sets must be sorted by the BY variables. If one or 
the other of your data sets is not already sorted, then use PROC SORT to do the job. 

Example To show how this is different from stacking data sets, we’ll use the amusement park 
data again. There are two data sets, one for the south entrance and one for the north. For every 
customer, the park collects the following data: the entrance (S or N), the customer’s Fun Times 
pass number, size of that customer’s party, and age. For customers entering from the north, the 
data set also includes parking lot number. Here is a sample of the data: 

Data for South Entrance  Data for North Entrance 

 S 43 3 27 N 21 5 41 1 
 S 44 3 24 N 87 4 33 3 
 S 45 3  2 N 65 2 67 1 
  N 66 2  7 1 

Notice that the data for the south entrance are already sorted by pass number, but the data for 
the north entrance are not. 

Instead of stacking the two data sets, this program interleaves the data sets by pass number. 
This program first reads the data for the south entrance and prints them to make sure they are 
correct. Then the program reads the data for the north entrance, sorts them, and prints them. 
Then in the final DATA step, SAS combines the two data sets, NORHTENTRANCE and 
SOUTHENTRANCE, creating a new data set named INTERLEAVE. The BY statement tells 
SAS to combine the data sets by PassNumber: 

DATA southentrance; 
   INFILE 'c:\MyRawData\South.dat'; 
   INPUT Entrance $ PassNumber PartySize Age; 
PROC PRINT DATA = southentrance; 
   TITLE 'South Entrance Data'; 



Chapter 6: Modifying and Combining SAS Data Sets 175

DATA northentrance; 
   INFILE 'c:\MyRawData\North.dat'; 
   INPUT Entrance $ PassNumber PartySize Age Lot; 
PROC SORT DATA = northentrance; 
   BY PassNumber; 
PROC PRINT DATA = northentrance; 
   TITLE 'North Entrance Data'; 

* Interleave observations by PassNumber; 
DATA interleave; 
   SET northentrance southentrance;
   BY PassNumber; 
PROC PRINT DATA = interleave; 
   TITLE 'Both Entrances, By Pass Number'; 
RUN;

Here are the results of the three PRINT procedures. Notice how the observations have been 
interleaved so that the new data set is sorted by PassNumber: 

                            South Entrance Data                       1 

                                     Pass     Party 
                 Obs    Entrance    Number     Size    Age 

                  1        S          43        3       27 
                  2        S          44        3       24 
                  3        S          45        3        2 

                            North Entrance Data                       2 

                                 Pass     Party 
             Obs    Entrance    Number     Size    Age    Lot 

              1        N          21        5       41     1 
              2        N          65        2       67     1 
              3        N          66        2        7     1 
              4        N          87        4       33     3 

                      Both Entrances, By Pass Number                 3 

                                 Pass     Party 
             Obs    Entrance    Number     Size    Age    Lot 

              1        N          21        5       41     1 
              2        S          43        3       27     . 
              3        S          44        3       24     . 
              4        S          45        3        2     . 
              5        N          65        2       67     1 
              6        N          66        2        7     1 
              7        N          87        4       33     3 



176 The Little SAS Book

1
2
3
5

1
2
3
5

1
2
5

+

6.4 Combining Data Sets Using a One-to-One Match Merge 

When you want to match observations from one data set 
with observations from another, use the MERGE statement 
in the DATA step. If you know the two data sets are in 
EXACTLY the same order, you don’t have to have any 
common variables between the data sets. Typically, 
however, you will want to have, for matching purposes, a 

common variable or several variables which taken together uniquely identify each observation. 
This is important. Having a common variable to merge by ensures that the observations are 
properly matched. For example, to merge patient data with billing data, you would use the 
patient ID as a matching variable. Otherwise you risk getting Mary Smith’s visit to the 
obstetrician mixed up with Matthew Smith’s visit to the optometrist. 

Merging SAS data sets is a simple process. First, if the data are not already sorted, use the SORT 
procedure to sort all data sets by the common variables. Then, in the DATA statement, name the 
new SAS data set to hold the results and follow with a MERGE statement listing the data sets to 
be combined. Use a BY statement to indicate the common variables: 

DATA new-data-set;
   MERGE data-set-1 data-set-2;
   BY variable-list;

If you merge two data sets, and they have variables with the same names—besides the BY 
variables—then variables from the second data set will overwrite any variables having the 
same name in the first data set. 

Example A Belgian chocolatier keeps track of the number of each type of chocolate sold each 
day. The code number for each chocolate and the number of pieces sold that day are kept in a file. 
In a separate file she keeps the names and descriptions of each chocolate as well as the code num-
ber. In order to print the day’s sales along with the descriptions of the chocolates, the two files must 
be merged together using the code number as the common variable.  Here is a sample of the data: 

Sales data 

   C865 15 
   K086  9 
   A536 21 
   S163 34 
   K014  1 
   A206 12 
   B713 29 

Descriptions 

   A206 Mokka     Coffee buttercream in dark chocolate 
   A536 Walnoot   Walnut halves in bed of dark chocolate 
   B713 Frambozen Raspberry marzipan covered in milk chocolate 
   C865 Vanille   Vanilla-flavored rolled in ground hazelnuts 
   K014 Kroon     Milk chocolate with a mint cream center 
   K086 Koning    Hazelnut paste in dark chocolate 
   M315 Pyramide  White with dark chocolate trimming 
   S163 Orbais    Chocolate cream in dark chocolate 



Chapter 6: Modifying and Combining SAS Data Sets 177

The first two parts of the following program read the descriptions and sales data. The 
descriptions data are already sorted by CodeNum, so we don’t need to use PROC SORT. The 
sales data are not sorted, so a PROC SORT follows the DATA step.  (If you attempt to merge data 
which are not sorted, SAS will refuse and give you this error message: ERROR: BY variables are 
not properly sorted.)  

DATA descriptions; 
   INFILE 'c:\MyRawData\chocolate.dat' TRUNCOVER; 
   INPUT CodeNum $ 1-4 Name $ 6-14 Description $ 15-60; 
DATA sales; 
   INFILE 'c:\MyRawData\chocsales.dat'; 
   INPUT CodeNum $ 1-4 PiecesSold 6-7; 
PROC SORT DATA = sales; 
   BY CodeNum; 

* Merge data sets by CodeNum; 
DATA chocolates; 
   MERGE sales descriptions; 
   BY CodeNum; 
PROC PRINT DATA = chocolates; 
   TITLE ”Today's Chocolate Sales”; 
RUN;

The final part of the program creates a data set named CHOCOLATES by merging the SALES data 
set and the DESCRIPTIONS data set. The common variable CodeNum in the BY statement is used 
for matching purposes. The following output shows the final data set after merging: 

                          Today's Chocolate Sales                       1 

     Code  Pieces 
Obs  Num    Sold   Name                       Description 

 1   A206    12    Mokka      Coffee buttercream in dark chocolate 
 2   A536    21    Walnoot    Walnut halves in bed of dark chocolate 
 3   B713    29    Frambozen  Raspberry marzipan covered in milk chocolate 
 4   C865    15    Vanille    Vanilla-flavored rolled in ground hazelnuts 
 5   K014     1    Kroon      Milk chocolate with a mint cream center 
 6   K086     9    Koning     Hazelnut paste in dark chocolate 
 7   M315     .    Pyramide   White with dark chocolate trimming 
 8   S163    34    Orbais     Chocolate cream in dark chocolate 

Notice that the final data set has a missing value for PiecesSold in the seventh observation. This is 
because there were no sales for the Pyramide chocolate. All observations from both data sets were 
included in the final data set whether they had a match or not. 



178 The Little SAS Book

1
2
2
3
3

1
2
2
3
3

1
3

+ a

b

a

b

b

6.5 Combining Data Sets Using a One-to-Many Match Merge 

Sometimes you need to combine two data sets by matching 
one observation from one data set with more than one 
observation in another. Suppose you had data for every 
state in the U.S. and wanted to combine it with data for 
every county. This would be a one-to-many match merge 
because each state observation matches with many county 
observations. 

The statements for a one-to-many match merge are identical to the statements for a one-to-one 
match merge: 

DATA new-data-set;
   MERGE data-set-1 data-set-2;
   BY variable-list;

The order of the data sets in the MERGE statement does not matter to SAS. In other words, a 
one-to-many merge is the same as a many-to-one merge.  

Before you merge two data sets, they must be sorted by one or more common variables. If your 
data sets are not already sorted in the proper order, then use PROC SORT to do the job. 

You cannot do a one-to-many merge without a BY statement. SAS uses the variables listed in the 
BY statement to decide which observations belong together. Without any BY variables for 
matching, SAS simply joins together the first observation from each data set, then the second 
observation from each data set, and so on. In other words, SAS performs a one-to-one 
unmatched merge, which is probably not what you want. 

If you merge two data sets, and they have variables with the same names�besides the BY 

variables�then variables from the second data set will overwrite any variables having the same 
name in the first data set. For example, if you merge two data sets both containing a variable 
named Score, then the final data set will contain only one variable named Score. The values for 
Score will come from the second data set. You can fix this by renaming the variables (giving 
them names such as Score1 and Score2) so that they will not overwrite each other.

1

Example A distributor of athletic shoes is putting all its shoes on sale at 20 to 30% off the regular 
price. The distributor has two data files, one with information about each type of shoe and one 
with the discount factors. The first file contains one record for each shoe with values for style, type 
of exercise (running, walking, or cross-training), and regular price. The second file contains one 
record for each type of exercise and its discount. Here are the two raw data files: 

Shoes data Discount data 
Max Flight      running 142.99 c-train .25 
Zip Fit Leather walking  83.99 running .30
Zoom Airborne   running 112.99 walking .20 
Light Step      walking  73.99 
Max Step Woven  walking  75.99 
Zip Sneak       c-train  92.99 

1
The RENAME= data set option is discussed in section 6.9. 



Chapter 6: Modifying and Combining SAS Data Sets 179

To find the sale price, the following program combines the two data files: 

DATA regular; 
   INFILE ’c:\MyRawData\Shoe.dat’; 
   INPUT Style $ 1-15 ExerciseType $ RegularPrice; 
PROC SORT DATA = regular; 
   BY ExerciseType; 

DATA discount; 
   INFILE ’c:\MyRawData\Disc.dat’; 
   INPUT ExerciseType $ Adjustment; 

* Perform many-to-one match merge; 
DATA prices; 
   MERGE regular discount; 
   BY ExerciseType; 
   NewPrice = ROUND(RegularPrice - (RegularPrice * Adjustment), .01); 
PROC PRINT DATA = prices; 
   TITLE ’Price List for May’; 
RUN;

The first DATA step reads the regular prices, creating a data set named REGULAR. That data 
set is then sorted by ExerciseType using PROC SORT. The second DATA step reads the price 
adjustments, creating a data set named DISCOUNT. This data set is already arranged by Exer-
ciseType, so it doesn’t have to be sorted. The third DATA step creates a data set named PRICES, 
merging the first two data sets by ExerciseType, and computes a variable called NewPrice. The 
output looks like this: 

                         Price List for May                              1 

                             Exercise      Regular                  New 
     Obs   Style               Type         Price     Adjustment   Price 

     1     Zip Sneak          c-train       92.99       0.25       69.74 
     2     Max Flight         running      142.99       0.30      100.09 
     3     Zoom Airborne      running      112.99       0.30       79.09 
     4     Zip Fit Leather    walking       83.99       0.20       67.19 
     5     Light Step         walking       73.99       0.20       59.19 
     6     Max Step Woven     walking       75.99       0.20       60.79 

Notice that the values for Adjustment from the DISCOUNT data set are repeated for every 
observation in the REGULAR data set with the same value of ExerciseType. 



180 The Little SAS Book

1
2
2
3
3

1
2
2
3
3

1
2
3

+
a

b

c

a

b

b

c

cPROC MEANS

6.6 Merging Summary Statistics with the Original Data 

Once in a while you need to combine summary statistics 
with your data, such as when you want to compare each 
observation to the group mean, or when you want to 
calculate a percentage using the group total. To do this, 
summarize your data using PROC MEANS, and put the 
results in a new data set. Then merge the summarized data 
back with the original data using a one-to-many match 
merge.  

Example A distributor of athletic shoes is considering doing a special promotion for the top 
selling styles. The vice-president of marketing has asked you to produce a report. The report 
should be divided by type of exercise (running, walking, or cross-training) and show the 
percentage of sales for each style within its type. For each shoe, the raw data file contains the 
style name, type of exercise, and total sales for the last quarter: 

Max Flight      running 1930 
Zip Fit Leather walking 2250 
Zoom Airborne   running 4150 
Light Step      walking 1130 
Max Step Woven  walking 2230 
Zip Sneak       c-train 1190 

Here is the program: 

DATA shoes; 
   INFILE ’c:\MyRawData\Shoesales.dat’; 
   INPUT Style $ 1-15 ExerciseType $ Sales; 
PROC SORT DATA = shoes; 
   BY ExerciseType; 

* Summarize sales by ExerciseType and print; 
PROC MEANS NOPRINT DATA = shoes; 
   VAR Sales; 
   BY ExerciseType; 
   OUTPUT OUT = summarydata SUM(Sales) = Total; 
PROC PRINT DATA = summarydata; 
   TITLE ’Summary Data Set’; 

* Merge totals with the original data set; 
DATA shoesummary; 
   MERGE shoes summarydata; 
   BY ExerciseType; 
   Percent = Sales / Total * 100; 
PROC PRINT DATA = shoesummary; 
   BY ExerciseType; 
   ID ExerciseType; 
   VAR Style Sales Total Percent; 
   TITLE ’Sales Share by Type of Exercise’; 
RUN;



Chapter 6: Modifying and Combining SAS Data Sets 181

This program is long but straightforward. It starts by reading the raw data in a DATA step 
and sorting them with PROC SORT. Then it summarizes the data with PROC MEANS by 
the variable ExerciseType. The OUTPUT statement tells SAS to create a new data set named 
SUMMARYDATA, containing a variable named Total, which equals the sum of the variable 
Sales. The NOPRINT option tells SAS not to print the standard PROC MEANS report. Instead, 
the summary data set is printed by PROC PRINT: 

                              Summary Data Set                              1 

                        Exercise 
                 Obs      Type      _TYPE_    _FREQ_    Total 

                  1     c-train        0         1       1190 
                  2     running        0         2       6080 
                  3     walking        0         3       5610 

In the last part of the program, the original data set, SHOES, is merged with SUMMARYDATA to 
make a new data set, SHOESUMMARY. This DATA step computes a new variable called Percent. 
Then the last PROC PRINT writes the final report with percentage of sales by ExerciseType for 
each title. Using a BY and an ID statement together gives this report a little different look: 

                       Sales Share by Type of Exercise                      2 

           Exercise 
             Type      Style              Sales    Total    Percent 

           c-train     Zip Sneak           1190     1190    100.000 

           running     Max Flight          1930     6080     31.743 
                       Zoom Airborne       4150     6080     68.257 

           walking     Zip Fit Leather     2250     5610     40.107 
                       Light Step          1130     5610     20.143 
                       Max Step Woven      2230     5610     39.750 



182 The Little SAS Book

1
2
2
3
3

1
2
2
3
3

+ total

total

total

total

total

totalPROC MEANS

6.7 Combining a Grand Total with the Original Data 

You can use the MEANS procedure to create a data set 
containing a grand total rather than BY group totals. But 
you cannot use a MERGE statement to combine a grand 
total with the original data because there is no common 
variable to merge by. Luckily, there is another way. You 
can use two SET statements like this: 

DATA new-data-set;
   IF _N_ = 1 THEN SET summary-data-set;
   SET original-data-set;

In this DATA step, original-data-set is the data set with more than one observation (the original 
data) and summary-data-set is the data set with a single observation (the grand total). SAS reads 
original-data-set in a normal SET statement, simply reading the observations in a straightforward 
way. SAS also reads summary-data-set with a SET statement but only in the first iteration of the 
DATA step (when _N_ equals 1).

1
 SAS then retains the values of variables from summary-data-set

for all observations in new-data-set.

This works because variables read with a SET statement are automatically retained. Normally 
you don’t notice this because the retained values are overwritten by the next observation. But in 
this case the variables from summary-data-set are read once at the first iteration of the DATA step 
and then retained for all other observations. The effect is similar to a RETAIN statement 
(discussed in section 3.9). This technique can be used any time you want to combine a single 
observation with many observations, without a common variable. 

Example To show how this is different from merging BY group summary statistics with 

original data, we’ll use the same data as in the previous section. A distributor of athletic 
shoes is considering doing a special promotion for the top-selling styles. The vice-president 
of marketing asks you to produce a report showing the percentage of total sales for each style. 
For each style of shoe the raw data file contains the style name, type of exercise, and sales for the 
last quarter: 

Max Flight      running 1930 
Zip Fit Leather walking 2250 
Zoom Airborne   running 4150 
Light Step      walking 1130 
Max Step Woven  walking 2230 
Zip Sneak       c-train 1190 

1
See section 6.14 for an explanation of _N_. 



Chapter 6: Modifying and Combining SAS Data Sets 183

Here is the program: 

DATA shoes; 
   INFILE 'c:\MyRawData\Shoesales.dat'; 
   INPUT Style $ 1-15 ExerciseType $ Sales; 

* Output grand total of sales to a data set and print; 
PROC MEANS NOPRINT DATA = shoes; 
   VAR Sales; 
   OUTPUT OUT = summarydata SUM(Sales) = GrandTotal; 
PROC PRINT DATA = summarydata; 
   TITLE 'Summary Data Set'; 

* Combine the grand total with the original data; 
DATA shoesummary; 
   IF _N_ = 1 THEN SET summarydata;
   SET shoes; 
   Percent = Sales / GrandTotal * 100; 
PROC PRINT DATA = shoesummary; 
   VAR Style ExerciseType Sales GrandTotal Percent; 
   TITLE 'Overall Sales Share'; 
RUN;

This program starts with a DATA step to input the raw data. Then PROC MEANS creates 
an output data set named SUMMARYDATA with one observation containing a variable named 
GrandTotal, which is equal to the sum of Sales. This will be a grand total because there is no 
BY or CLASS statement. The second DATA step combines the original data with the grand total 
using two SET statements and then computes the variable Percent using the grand total data.  

The output looks like this: 

                                Summary Data Set                               1 

                                               Grand 
                    Obs    _TYPE_    _FREQ_    Total 

                     1        0         6      12880 

                        Overall Sales Share                              2 

                            Exercise              Grand 
  Obs    Style                Type       Sales    Total    Percent 

   1     Max Flight          running      1930    12880    14.9845 
   2     Zip Fit Leather     walking      2250    12880    17.4689 
   3     Zoom Airborne       running      4150    12880    32.2205 
   4     Light Step          walking      1130    12880     8.7733 
   5     Max Step Woven      walking      2230    12880    17.3137 
   6     Zip Sneak           c-train      1190    12880     9.2391



184 The Little SAS Book

1
2
3
4
5

1
2
3
4

2
3
5

+
.

b

c

a

d

a

.

d b

c

6.8 Updating a Master Data Set with Transactions 

The UPDATE statement is used far less than the MERGE 
statement, but it is just right for those times when you have 
a master data set that must be updated with bits of new 
information. A bank account is a good example of this type 
of transaction-oriented data, since it is regularly updated 
with credits and debits. 

The UPDATE statement is similar to the MERGE statement, because both combine data sets by 
matching observations on common variables.

1
 However, there are critical differences: 

�� First, with UPDATE the resulting master data set always has just one observation for 
each unique value of the common variables. That way, you don’t get a new observation 
for your bank account every time you deposit a paycheck. 

�� Second, missing values in the transaction data set do not overwrite existing values in 
the master data set. That way, you are not obliged to enter your address and tax ID 
number every time you make a withdrawal. 

The basic form of the UPDATE statement is 

DATA master-data-set;
   UPDATE master-data-set transaction-data-set;
   BY variable-list;

Here are a few points to remember about the UPDATE statement. You can specify only two data 
sets: one master and one transaction. Both data sets must be sorted by their common variables. 
Also, the values of those BY variables must be unique in the master data set. Using the bank 
example, you could have many transactions for a single account, but only one observation per 
account in the master data set. 

Example A hospital maintains a master database with information about patients. A sample 
appears below. Each record contains the patient’s account number, last name, address, date of 
birth, sex, insurance code, and the date that patient’s information was last updated.  

620135 Smith    234 Aspen St.     12-21-1975 m CBC 02-16-1998 
645722 Miyamoto 65 3rd Ave.       04-03-1936 f MCR 05-30-1999 
645739 Jensvold 505 Glendale Ave. 06-15-1960 f HLT 09-23-1993 
874329 Kazoyan  76-C La Vista     .          . MCD 01-15-2003 

Whenever a patient is admitted to the hospital, the admissions staff check the data for that 
patient. They create a transaction record for every new patient and for any returning patients 
whose status has changed. Here are three transactions: 

620135 .        .                 .          . HLT 06-15-2003 
874329 .        .                 04-24-1954 m .   06-15-2003 
235777 Harman   5656 Land Way     01-18-2000 f MCD 06-15-2003 

1
The MODIFY statement is another way to update a master data set. See the SAS Help and Documentation for more 

information. 



Chapter 6: Modifying and Combining SAS Data Sets 185

The first transaction is for a returning patient whose insurance has changed. The second 
transaction fills in missing information for a returning patient. The last transaction is for a new 
patient who must be added to the database. 

Since master data sets are updated frequently, they are usually saved as permanent SAS data sets. 
To make this example more realistic, this program puts the master data into a permanent data set 
named PATIENTMASTER in the MySASLib directory on the C drive (Windows). 

LIBNAME perm ‘c:\MySASLib’; 
DATA perm.patientmaster; 
   INFILE 'c:\MyRawData\Admit.dat'; 
   INPUT Account LastName $ 8-16 Address $ 17-34 
      BirthDate MMDDYY10. Sex $ InsCode $ 48-50 @52 LastUpdate MMDDYY10.; 
RUN;

The next program reads the transaction data and sorts them with PROC SORT. Then it adds the 
transactions to PATIENTMASTER with an UPDATE statement. The master data set is already 
sorted by Account and, therefore, doesn’t need to be sorted again: 

LIBNAME perm ‘c:\MySASLib’; 
DATA transactions; 
   INFILE ’c:\MyRawData\NewAdmit.dat’; 
   INPUT Account LastName $ 8-16 Address $ 17-34 BirthDate MMDDYY10.
      Sex $ InsCode $ 48-50 @52 LastUpdate MMDDYY10.; 
PROC SORT DATA = transactions; 
   BY Account; 

* Update patient data with transactions; 
DATA perm.patientmaster; 
   UPDATE perm.patientmaster transactions; 
   BY Account; 
PROC PRINT DATA = perm.patientmaster; 
   FORMAT BirthDate LastUpdate MMDDYY10.; 
   TITLE ’Admissions Data’; 
RUN;

The results of the PROC PRINT look like this: 

                               Admissions Data                          1 

                                                          Ins 
    Obs Account LastName Address            BirthDate Sex Code LastUpdate 

     1   235777 Harman   5656 Land Way     01/18/2000  f  MCD  06/15/2003 
     2   620135 Smith    234 Aspen St.     12/21/1975  m  HLT  06/15/2003 
     3   645722 Miyamoto 65 3rd Ave.       04/03/1936  f  MCR  05/30/1999 
     4   645739 Jensvold 505 Glendale Ave. 06/15/1960  f  HLT  09/23/1993 
     5   874329 Kazoyan  76-C La Vista     04/24/1954  m  MCD  06/15/2003 



186 The Little SAS Book

6.9 Using SAS Data Set Options 

In this book, you have already seen a lot of options. It may help to keep them straight if you 
realize that the SAS language has three basic types of options: system options, statement options, 
and data set options. System options have the most global influence, followed by statement 
options, with data set options having the most limited effect. 

System options are those that stay in effect for the duration of your job or session. These options 
affect how SAS operates, and are usually issued when you invoke SAS or via an OPTIONS 
statement. System options include the CENTER option, which tells SAS to center all output, and 
the LINESIZE= option setting the maximum line length for output.

1

Statement options appear in individual statements and influence how SAS runs that particular 
DATA or PROC step. The NOPRINT option in PROC MEANS, for example, tells SAS not to 
produce a printed report. DATA= is a statement option that tells SAS which data set to use for a 
procedure. You can use DATA= in any procedure that reads a SAS data set. Without it, SAS 
defaults to the most recently created data set.  

In contrast, data set options affect only how SAS reads or writes an individual data set. You can 
use data set options in DATA steps (in DATA, SET, MERGE, or UPDATE statements) or in 
PROC steps (in conjuction with a DATA= statement option). To use a data set option, you simply 
put it between parentheses directly following the data set name. These are the most frequently 
used data set options: 

KEEP = variable-list tells SAS which variables to keep. 

DROP = variable-list tells SAS which variables to drop. 

RENAME = (oldvar = newvar) tells SAS to rename certain variables. 

FIRSTOBS = n tells SAS to start reading at observation n.

OBS = n tells SAS to stop reading at observation n.

IN = new-var-name creates a temporary variable for tracking whether  
  that data set contributed to the current observation. 

Selecting and renaming variables Here are examples of the KEEP=, DROP=, and 
RENAME= data set options: 

DATA small; 
   SET animals (KEEP = Cat Mouse Rabbit); 

PROC PRINT DATA = animals (DROP = Cat Mouse Rabbit); 

DATA animals (RENAME = (Cat = Feline Dog = Canine)); 
   SET animals; 

PROC PRINT DATA = animals (RENAME =(Cat = Feline Dog = Canine)); 

1
Other system options are discussed in section 1.13. 



Chapter 6: Modifying and Combining SAS Data Sets 187

You could probably get by without these options, but they play an important role in fine tuning 
SAS programs. Data sets, for example, have a way of accumulating unwanted variables. Dropping 
unwanted variables will make your program run faster and use less disk space. Likewise, when 
you read a large data set, you often need only a few variables. By using the KEEP= option, you can 
avoid reading a lot of variables you don’t intend to use. 

The DROP=, KEEP=, and RENAME= options are similar to the DROP, KEEP, and RENAME 
statements. However, the statements apply to all data sets named in the DATA statement while the 
options apply only to the particular data set whose name they follow. Also, the statements are 
more limited than the options since they can be used only in DATA steps, and apply only to the 
data set being created. In contrast, the data set options can be used in DATA or PROC steps and 
can apply to input or output data sets. Please note that these options do not change input data sets; 
they change only what is read from input data sets.    

Selecting observations by observation number You can use the FIRSTOBS= and OBS= 
data set options together to tell SAS which observations to read from a data set. The options in the 
following statements tell SAS to read just 20 observations: 

DATA animals; 
   SET animals (FIRSTOBS = 101 OBS = 120); 

PROC PRINT DATA = animals (FIRSTOBS = 101 OBS = 120); 

If you use large data sets, you can save development time by testing your programs with a subset 
of your data with the FIRSTOBS= and OBS= options. 

The FIRSTOBS= and OBS= data set options are similar to statement and system options with the 
same name. The statement options apply only to raw data files being read with an INFILE 
statement, whereas the data set options apply only to existing SAS data sets that you read in a 
DATA or PROC step. The system options apply to all files and data sets. If you use similar system 
and data set options, the data set option will override the system option for that particular data set. 

Tracking observations The IN= option is somewhat different from other options covered 
here. While the other options affect existing variables, IN= creates a new variable. That new 
variable is temporary and has the name you specify in the option. In this example, SAS would 
create two temporary variables, one named InAnimals and the other named InHabitat: 

DATA animals; 
   MERGE animals (IN = InAnimals) habitat (IN = InHabitat); 
   BY Species; 

These variables exist only for the duration of the current DATA step and are not added to the 
data set being created. SAS gives IN= variables a value of 0 if that data set did not contribute to 
the current observation and a value of 1 if it did. You can use the IN= variable to track, select, or 
eliminate observations based on the data set of origin. The next section explains the IN= option in 
more detail. 



188 The Little SAS Book

a
c

a
b
c

a
c

+

ba
b
c

a
c

+

Select matching observations

Select non-matching observations

OR

6.10 Tracking and Selecting Observations with the IN= Option 

When you combine two data sets, you can use 
IN= options to track which of the original data sets 
contributed to each observation in the new data set. 
You can think of the IN= option as a sort of tag. Instead 
of saying “Product of Canada,” the tag says something 
like “Product of data set one.” Once you have that 
information, you can use it in many ways including 
selecting matching or non-matching observations 
during a merge. 

The IN= data set option can be used any time you read 
a SAS data set in a DATA step—with SET, MERGE, or 
UPDATE—but is most often used with MERGE. To use 

the IN= option, you simply put the option in parentheses directly following the data set you 
want to track, and specify a name for the IN= variable. The names of IN=  variables must follow 
standard SAS naming conventions—start with a letter or underscore; be 32 characters or fewer in 
length; and contain only letters, numerals, or underscores.  

The DATA step below creates a data set named BOTH by merging two data sets named STATE 
and COUNTY. Then the IN= options create two variables named InState and InCounty: 

DATA both; 
   MERGE state (IN = InState) county (IN = InCounty); 
   BY StateName; 

Unlike most variables, IN= variables are temporary, existing only during the current DATA step. 
SAS gives the IN= variables a value of 0 or 1. A value of 1 means that data set did contribute to 
the current observation, and a value of 0 means the data set did not contribute. Suppose the 
COUNTY data set above contained no data for Louisiana. (Louisiana has parishes, not counties.) 
In that case, the BOTH data set would contain one observation for Louisiana which would have a 
value of 1 for the variable InState and a value of 0 for InCounty because the STATE data set 
contributed to that observation, but the COUNTY data set did not. 

You can use this variable like any other variable in the current DATA step, but it is most often 
used in subsetting IF or IF-THEN statements such as these: 

Subsetting IF: IF InState = 1;
  IF InCounty = 0; 
  IF InState = 1 AND InCounty = 1; 
 IF-THEN: IF InCounty = 1 THEN Origin = 1;
  IF InState = 1 THEN State = 'Yes'; 

Example A sporting goods manufacturer wants to send a sales rep to contact all customers 
who did not place any orders during the third quarter of the year. The company has two data 
files, one that contains all customers and one that contains all orders placed during the third 
quarter. To compile a list of customers without orders, you merge the two data sets using the 
IN= option, and then select customers who had no observations in the orders data set. The 
customer data file contains the customer number, name, and address. The orders data file 



Chapter 6: Modifying and Combining SAS Data Sets 189

contains the customer number and total price, with one observation for every order placed 
during the third quarter. Here are samples of the two raw data files: 

 Customer data Orders data 

101 Murphy’s Sports 115 Main St.  102 562.01 
102 Sun N Ski 2106 Newberry Ave. 104 254.98 
103 Sports Outfitters 19 Cary Way 104 1642.00 
104 Cramer & Johnson 4106 Arlington Blvd. 101 3497.56 
105 Sports Savers 2708 Broadway 102 385.30 

Here is the program that finds customers who did not place any orders: 

DATA customer; 
   INFILE ’c:\MyRawData\Address.dat’ TRUNCOVER; 
   INPUT CustomerNumber Name $ 5-21 Address $ 23-42; 
DATA orders; 
   INFILE ’c:\MyRawData\OrdersQ3.dat’; 
   INPUT CustomerNumber Total; 
PROC SORT DATA = orders; 
   BY CustomerNumber; 

* Combine the data sets using the IN= option; 
DATA noorders; 
   MERGE customer orders (IN = Recent); 
   BY CustomerNumber; 
   IF Recent = 0; 
PROC PRINT DATA = noorders; 
   TITLE ’Customers with No Orders in the Third Quarter’; 
RUN;

The customer data are already sorted by customer number and so do not need to be sorted with 
PROC SORT. The orders data, however, are in the order received and must be sorted by customer 
number before merging. In the final DATA step, the IN= option creates a variable named Recent, 
which equals 1 if the ORDERS data set contributed to that observation and 0 if it did not. Then a 
subsetting IF statement keeps only the observations where Recent is equal to 0—those obser-
vations with no orders data. Notice that there is no IN= option on the CUSTOMER data set. Only 
one IN= option was needed to identify customers who did not place any orders. Here is the list that 
can be given to sales reps: 

              Customers with No Orders in the Third Quarter            1 

             Customer 
      Obs     Number           Name              Address       Total 

       1        103      Sports Outfitters    19 Cary Way        . 
       2        105      Sports Savers        2708 Broadway      . 

The values for the variable Total are missing because these customers did not have observations in 
the ORDERS data set. The variable Recent does not appear in the output because, as a temporary 
variable, it was not added to the NOORDERS data set. 



190 The Little SAS Book

1
2
3

a
1
b
c
2
3

and

a
b
c

6.11 Writing Multiple Data Sets Using the OUTPUT Statement 

Up to this point, all the DATA steps in this book have 
created a single data set, except for DATA _NULL_ 
statements which produce no data set at all. Normally you 
want to make only one data set in each DATA step. 
However, there may be times when it is more efficient or 
more convenient to create multiple data sets in a single 
DATA step. You can do this by simply putting more than 
one data set name in your DATA statement. The statement 
below tells SAS to create three data sets named LIONS, 
TIGERS, and BEARS: 

                             DATA lions tigers bears; 

If that is all you do, then SAS will write all the observations to all the data sets, and you will have 
three identical data sets. Normally, of course, you want to create different data sets. You can do 
that with an OUTPUT statement. 

Every DATA step has an implied OUTPUT statement at the end which tells SAS to write the 
current observation to the output data set before returning to the beginning of the DATA step to 
process the next observation. You can override this implicit OUTPUT statement with your own 
OUTPUT statement. The basic form of the OUTPUT statement is 

OUTPUT data-set-name;

If you leave out the data set name then the observation will be written to all data sets named in 
the DATA statement. OUTPUT statements can be used alone or in IF-THEN or DO-loop 
processing. 

IF family = 'Ursidae' THEN OUTPUT bears; 

Example A local zoo maintains a data base about the feeding of the animals. A portion of the 
data appears below. For each group of animals the data include the scientific class, the enclosure 
those animals live in, and whether they get fed in the morning, afternoon, or both: 

bears     Mammalia E2 both 
elephants Mammalia W3 am 
flamingos Aves     W1 pm 
frogs     Amphibia S2 pm 
kangaroos Mammalia N4 am 
lions     Mammalia W6 pm 
snakes    Reptilia S1 pm 
tigers    Mammalia W9 both 
zebras    Mammalia W2 am 

To help with feeding the animals, the following program creates two lists, one for morning 
feedings and one for afternoon feedings. 



Chapter 6: Modifying and Combining SAS Data Sets 191

DATA morning afternoon; 
   INFILE 'c:\MyRawData\Zoo.dat'; 
   INPUT Animal $ 1-9 Class $ 11-18 Enclosure $ FeedTime $; 
   IF FeedTime = 'am' THEN OUTPUT morning; 
      ELSE IF FeedTime = 'pm' THEN OUTPUT afternoon; 
      ELSE IF FeedTime = 'both' THEN OUTPUT; 
PROC PRINT DATA = morning; 
   TITLE 'Animals with Morning Feedings'; 
PROC PRINT DATA = afternoon; 
   TITLE 'Animals with Afternoon Feedings'; 
RUN;

This DATA step creates two data sets named MORNING and AFTERNOON. Then the 
IF-THEN/ELSE statements tell SAS which observations to put in each data set. Because the 
final OUTPUT statement does not specify a data set, SAS adds those observations to both data 
sets. The log contains these notes saying that SAS read one input file and wrote two data sets: 

NOTE: 9 records were read from the infile 'c:\MyRawData\Zoo.dat'. 

NOTE: The data set WORK.MORNING has 5 observations and 4 variables. 

NOTE: The data set WORK.AFTERNOON has 6 observations and 4 variables. 

Here are the two reports, one for each data set: 

                    Animals with Morning Feedings                    1 

                                                       Feed 
          Obs    Animal        Class      Enclosure    Time 

           1     bears        Mammalia       E2        both 
           2     elephants    Mammalia       W3        am 
           3     kangaroos    Mammalia       N4        am 
           4     tigers       Mammalia       W9        both 
           5     zebras       Mammalia       W2        am 

                   Animals with Afternoon Feedings                   2 

                                                       Feed 
          Obs    Animal       Class       Enclosure    Time 

           1     bears        Mammalia       E2        both 
           2     flamingos    Aves           W1        pm 
           3     frogs        Amphibia       S2        pm 
           4     lions        Mammalia       W6        pm 
           5     snakes       Reptilia       S1        pm 
           6     tigers       Mammalia       W9        both 

OUTPUT statements have other uses besides writing multiple data sets in a single DATA step and 
can be used any time you want to explicitly control when SAS writes observations to a data set. 



192 The Little SAS Book

1
2

1
1
2
2

6.12 Making Several Observations from One Using the 
OUTPUT Statement 

Usually SAS writes an observation to a data set at the end of the DATA step, 
but you can override this default using the OUTPUT statement. If you want 
to write several observations for each pass through the DATA step, you 
can put an OUTPUT statement in a DO loop or just use several OUTPUT 
statements. The OUTPUT statement gives you control over when an 
observation is written to a SAS data set. If your DATA step doesn’t have 

an OUTPUT statement, then it is implied at the end of the step. Once you put an OUTPUT 
statement in your DATA step, it is no longer implied, and SAS writes an observation only 
when it encounters an OUTPUT statement. 

Example The following program demonstrates how you can use an OUTPUT statement in a 
DO loop to generate data. Here we have a mathematical equation (y=x

2
) and we want to generate 

data points for later plotting: 

* Create data for variables x and y; 
DATA generate; 
   DO x = 1 TO 6; 
      y = x ** 2; 
      OUTPUT; 
   END; 
PROC PRINT DATA = generate; 
   TITLE 'Generated Data'; 
RUN;

This program has no INPUT or SET statement—so there is only one iteration of the entire DATA 
step—but it has a DO loop with six iterations. Because the OUTPUT statement is inside the DO 
loop, an observation is created each time through the loop. Without the OUTPUT statement, SAS 
would have written only one observation at the end of the DATA step when it reached the 
implied OUTPUT. The following are the results of the PROC PRINT: 

                              Generated Data                        1 

                              Obs    x     y 

                               1     1     1 
                               2     2     4 
                               3     3     9 
                               4     4    16 
                               5     5    25 
                               6     6    36 



Chapter 6: Modifying and Combining SAS Data Sets 193

Example Here’s how you can use OUTPUT statements to create several observations from a 
single pass through the DATA step. The following data are for ticket sales at three movie 
theaters. After the month are the theaters’ names and sales for all three theaters: 

Jan Varsity 56723 Downtown 69831 Super-6 70025 
Feb Varsity 62137 Downtown 43901 Super-6 81534 
Mar Varsity 49982 Downtown 55783 Super-6 69800 

For the analysis you want to do, you need to have the theater name as one variable and the ticket 
sales as another variable. The month should be repeated three times, once for each theater. 

The following program has three INPUT statements all reading from the same raw data file. The first 
INPUT statement reads values for Month, Location, and Tickets, and then holds the data line using the 
trailing at sign (@). The OUTPUT statement that follows writes an observation. The next INPUT 
statement reads the second set of data for Location and Tickets and again holds the data line. Another 
OUTPUT statement writes another observation. Month still has the same value because it isn’t in the 
second INPUT statement. The last INPUT statement reads the last values for Location and Tickets, this 
time releasing the data line for the next iteration through the DATA step. The final OUTPUT statement 
writes the third observation for that iteration of the DATA step. The program has three OUTPUT 
statements for the three observations created in each iteration of the DATA step: 

* Create three observations for each data line read 
*   using three OUTPUT statements; 
DATA theaters; 
   INFILE 'c:\MyRawData\Movies.dat'; 
   INPUT Month $ Location $ Tickets @; 
   OUTPUT; 
   INPUT Location $ Tickets @; 
   OUTPUT; 
   INPUT Location $ Tickets; 
   OUTPUT; 
PROC PRINT DATA = theaters; 
   TITLE 'Ticket Sales'; 
RUN;

The following are the results of the PROC PRINT. Notice that there are three observations in the 
data set for each line in the raw data file and that the value for Month is repeated: 

                               Ticket Sales                           1 

                    Obs    Month    Location    Tickets 

                     1      Jan     Varsity      56723 
                     2      Jan     Downtown     69831 
                     3      Jan     Super-6      70025 
                     4      Feb     Varsity      62137 
                     5      Feb     Downtown     43901 
                     6      Feb     Super-6      81534 
                     7      Mar     Varsity      49982 
                     8      Mar     Downtown     55783 
                     9      Mar     Super-6      69800 



194 The Little SAS Book

6.13 Changing Observations to Variables Using PROC TRANSPOSE 

We have already seen ways to combine data sets, create new 
variables, and sort data. Now, using PROC TRANSPOSE, 
we will flip data—so get your spatulas ready. 

The TRANSPOSE procedure transposes SAS data sets, 
turning observations into variables or variables into 
observations. In most cases, to convert observations into 
variables, you can use the following statements: 

PROC TRANSPOSE DATA = old-data-set OUT = new-data-set;
   BY variable-list;
   ID variable;
   VAR variable-list;

In the PROC TRANSPOSE statement, old-data-set refers to the SAS data set you want to 
transpose, and new-data-set is the name of the newly transposed data set. 

BY statement You can use the BY statement if you have any grouping variables that you 

want to keep as variables. These variables are included in the transposed data set, but they are 
not themselves transposed. The transposed data set will have one observation for each BY level 
per variable transposed. For example, in the figure above, the variable X is the BY variable. The 
data set must be sorted by these variables before transposing. 

ID statement The ID statement names the variable whose formatted values will become the 
new variable names. The ID values must occur only once in the data set; or if a BY statement is 
present, then the values must be unique within BY-groups. If the ID variable is numeric, then the 
new variable names have an underscore for a prefix (_1 or _2, for example). If you don’t use an 
ID statement, then the new variables will be named COL1, COL2, and so on. In the figure above, 
the variable Y is the ID variable. Notice how its values are the new variable’s names in the 
transposed data set. 

VAR statement The VAR statement names the variables whose values you want to 
transpose. In the figure above, the variable Z is the VAR variable. SAS creates a new variable, 
_NAME_, which has as values the names of the variables in the VAR statement. If there is more 
than one VAR variable, then _NAME_ will have more than one value. 

Example Suppose you have the following data about players for minor league baseball 

teams. You have the team name, player’s number, the type of data (salary or batting average), 
and the entry: 

Garlics 10 salary 43000 
Peaches  8 salary 38000 
Garlics 21 salary 51000 
Peaches 10 salary 47500 
Garlics 10 batavg .281 
Peaches  8 batavg .252 
Garlics 21 batavg .265 
Peaches 10 batavg .301 

B

1
2

1
1
2
2

A

B

A

B

Z

Z

X Y Z _NAME_AX



Chapter 6: Modifying and Combining SAS Data Sets 195

You want to look at the relationship between batting average and salary. To do this, salary and 
batting average must be variables. The following program reads the raw data into a SAS data set 
and sorts the data by team and player. Then the data are transposed using PROC TRANSPOSE. 

DATA baseball; 
   INFILE 'c:\MyRawData\Transpos.dat'; 
   INPUT Team $ Player Type $ Entry; 
PROC SORT DATA = baseball; 
   BY Team Player; 
PROC PRINT DATA = baseball; 
   TITLE 'Baseball Data After Sorting and Before Transposing'; 

* Transpose data so salary and batavg are variables; 
PROC TRANSPOSE DATA = baseball OUT = flipped; 
   BY Team Player; 
   ID Type; 
   VAR Entry; 
PROC PRINT DATA = flipped; 
   TITLE 'Baseball Data After Transposing'; 
RUN;

In the PROC TRANSPOSE step, the BY variables are Team and Player. You want those variables to 
remain in the data set, and they define the new observations (you want  only one observation for each 
team and player combination). The ID variable is Type, whose values (salary and batavg) will be the 
new variable names. The variable to be transposed, Entry, is specified in the VAR statement. Notice 
that its name, Entry, now appears as a value under the variable _NAME_. The TRANSPOSE 
procedure automatically generates the _NAME_ variable, but in this application it is not very 
meaningful and could be dropped. 

Here are the results: 

            Baseball Data After Sorting and Before Transposing        1 

              Obs     Team      Player     Type        Entry 

               1     Garlics      10      salary    43000.00 
               2     Garlics      10      batavg        0.28 
               3     Garlics      21      salary    51000.00 
               4     Garlics      21      batavg        0.27 
               5     Peaches       8      salary    38000.00 
               6     Peaches       8      batavg        0.25 
               7     Peaches      10      salary    47500.00 
               8     Peaches      10      batavg        0.30 

                      Baseball Data After Transposing                 2 

          Obs     Team      Player    _NAME_    salary    batavg 

           1     Garlics      10      Entry      43000     0.281 
           2     Garlics      21      Entry      51000     0.265 
           3     Peaches       8      Entry      38000     0.252 
           4     Peaches      10      Entry      47500     0.301 



196 The Little SAS Book

6.14 Using SAS Automatic Variables 

In addition to the variables you create in your SAS data set, SAS creates a few more called 
automatic variables. You don’t ordinarily see these variables because they are temporary and are 
not saved with your data. But they are available in the DATA step, and you can use them just 
like you use any variable that you create yourself. 

_N_ and _ERROR_ The _N_ and _ERROR_ variables are always available to you in the 
DATA step. _N_ indicates the number of times SAS has looped through the DATA step. This is 
not necessarily equal to the observation number, since a simple subsetting IF statement can 
change the relationship between observation number and the number of iterations of the DATA 
step. The _ERROR_ variable has a value of 1 if there is a data error for that observation and 0 if 
there isn’t. Things that can cause data errors include invalid data (such as characters in a numeric 
field), conversion errors (like division by zero), and illegal arguments in functions (including log 
of zero). 

FIRST.variable and LAST.variable Other automatic variables are available only in 
special circumstances. The FIRST.variable and LAST.variable automatic variables are available 
when you are using a BY statement in a DATA step. The FIRST.variable will have a value of 1 
when SAS is processing an observation with the first occurrence of a new value for that variable 
and a value of 0 for the other observations. The LAST.variable will have a value of 1 for an 
observation with the last occurrence of a value for that variable and the value 0 for the other 
observations. 

Example Your hometown is having a walk around the town square to raise money for the 
library. You have the following data: entry number, age group, and finishing time. (Notice that 
there is more than one observation per line of data.) 

54 youth  35.5 21 adult  21.6  6 adult  25.8 13 senior 29.0 
38 senior 40.3 19 youth  39.6  3 adult  19.0 25 youth  47.3 
11 adult  21.9  8 senior 54.3 41 adult  43.0 32 youth  38.6 

The first thing you want to do is create a new variable for overall finishing place and print 
the results. The first part of the following program reads the raw data, and sorts the data by 
finishing time (Time). Then another DATA step creates the new Place variable and gives it the 
current value of _N_. The PRINT procedure produces the list of finishers: 

DATA walkers; 
   INFILE 'c:\MyRawData\Walk.dat'; 
   INPUT Entry AgeGroup $ Time @@; 
PROC SORT DATA = walkers; 
   BY Time; 
* Create a new variable, Place; 
DATA ordered; 
   SET walkers; 
   Place = _N_; 
PROC PRINT DATA = ordered; 
  TITLE 'Results of Walk'; 



Chapter 6: Modifying and Combining SAS Data Sets 197

PROC SORT DATA = ordered; 
   BY AgeGroup Time; 
* Keep the first observation in each age group; 
DATA winners; 
   SET ordered; 
   BY AgeGroup; 
   IF FIRST.AgeGroup = 1; 
PROC PRINT DATA = winners; 
   TITLE 'Winners in Each Age Group'; 
RUN;

The second part of this program produces a list of the top finishers in each age category. The 
ORDERED data set containing the new Place variable is sorted by AgeGroup and Time. In the 
DATA step, the SET statement reads the ORDERED data set. The BY statement in the DATA step 
generates the FIRST.AgeGroup and LAST.AgeGroup temporary variables. The subsetting IF 
statement, IF FIRST.AgeGroup = 1, keeps only the first observation in the BY group. Since the 
Winners data set is sorted by AgeGroup and Time, the first observation in each BY group is the top 
finisher of that group. 

Here are the results of the two PRINT procedures. The first page shows the data after sorting by 
Time and including the new variable Place. Notice that the _N_ temporary variable does not 
appear in the printout. The second page shows the results of the second part of the program—the 
winners for each age category and their overall place: 

                              Results of Walk                             1 

                                   Age 
                  Obs    Entry    Group     Time    Place 

                    1       3     adult     19.0       1 
                    2      21     adult     21.6       2 
                    3      11     adult     21.9       3 
                    4       6     adult     25.8       4 
                    5      13     senior    29.0       5 
                    6      54     youth     35.5       6 
                    7      32     youth     38.6       7 
                    8      19     youth     39.6       8 
                    9      38     senior    40.3       9 
                   10      41     adult     43.0      10 
                   11      25     youth     47.3      11 
                   12       8     senior    54.3      12 

                         Winners in Each Age Group                        2 
                                   Age 
                  Obs    Entry    Group     Time    Place 

                   1        3     adult     19.0      1 
                   2       13     senior    29.0      5 
                   3       54     youth     35.5      6 



7

From The Official Explanations by Paul Dickson. Copyright 1980 by Delacorte Press.
Reprinted by permission of the publisher.

‘‘ ’’
Nobody is too old to

learnbut a lot of people keep
putting it off.

WILLIAM O’NEILL



CHAPTER 7

Writing Flexible Code with the 
SAS® Macro Facility

7.1 Macro Concepts    200

7.2 Substituting Text with Macro Variables    202

7.3 Creating Modular Code with Macros    204

7.4 Adding Parameters to Macros    206

7.5 Writing Macros with Conditional Logic    208

7.6 Writing Data-Driven Programs with CALL SYMPUT    210

7.7 Debugging Macro Errors    212



200 The Little SAS Book

macro
processor

macro
statements

standard
SAS
statements

7.1  Macro Concepts 

Not so long ago the SAS macro facility was considered an advanced topic relevant only to 
experienced SAS users. Over time, however, macros have become more prevalent so that now 
even new SAS users would do well to know a little about the SAS macro facility. Fortunately, the 
basic macro concepts are not difficult to understand.  

This chapter introduces the most commonly used features of the SAS macro language. For a 
complete description, see the SAS Help and Documentation for the SAS Macro Language. 

Because macros take longer to write and debug than standard SAS code, you generally won’t 
want macros in programs that will be run only a few times. But used properly, macros can make 
the development and maintenance of production programs much easier. They do this in several 
ways. First, with macros you can make one small change in your program and have SAS echo 
that change throughout your program. Second, macros allow you to write a piece of code once 
and use it over and over, in the same program or in different programs. You can even store 
programs in a central location—an autocall library—and share them between programs and 
between programmers. Third, you can make your programs data driven, letting SAS decide 
what to do based on actual data values. 

The macro processor  When you submit a standard SAS program, SAS compiles and then 
immediately executes it. But when you write a macro, there is an additional step. Before SAS 
can compile and execute your program, SAS must pass your macro statements to the macro 
processor which “resolves” your macros, generating standard SAS code. Because you are writing 
a program that writes a program, this is sometimes called meta-programming. 

Macros and macro variables  SAS macro code consists of two basic parts: macros and 
macro variables. The names of  macro variables are prefixed with an ampersand (&) while the 
names of macros are prefixed with a percent sign (%).

1
 A macro variable is like a standard data 

variable except that, having only a single value, it does not belong to a data set, and its value is 
always character. This value could be a variable name, a numeral, or any text that you want 
substituted into your program. A macro, on the other hand, is a larger piece of a program that 
may contain complex logic including complete DATA and PROC steps and macro statements 
such as %DO, %END, and %IF-%THEN/%ELSE.  

When SAS users talk about “macros” they sometimes mean macros, and sometimes mean macro 
processing in general. Macro variables are usually called macro variables.

1 There are exceptions. Macro names prefixed with a %  are called name-style macros. Two other types of macros do not start 
  with a %: command-style and statement-style. In general, macros starting with a prefix are superior both because they are 
  more efficient (the macro processor recognizes them more quickly) and because they are less easily confused with SAS 
  keywords.  

  Also the %INCLUDE, %LIST, and %RUN statements are NOT part of the macro facility despite their % prefix. 



Chapter 7: Writing Flexible Code with the SAS Macro Facility   201

Local versus global Macro variables can have two kinds of “scope”�either local or global. 
Generally, a macro variable is local if it is defined inside a macro. A macro variable is generally 
global if it is defined in “open code” which is everything outside a macro. You can use a global 
macro variable anywhere in your program, but you can use a local macro variable only inside its 
own macro.

 2
 If you keep this in mind as you write your programs, you will avoid two common 

errors: trying to use a local macro variable outside its macro and accidentally creating local and 
global macro variables with the same name. 

Turning on the macro processor Before you can use macros you must have the MACRO 
system option turned on. This option is usually turned on by default, but may be turned off, 
especially on mainframes, because SAS runs slightly faster when it doesn’t have to bother with 
checking for macros. If you are not sure whether the MACRO option is on, you can find out by 
submitting these statements: 

PROC OPTIONS OPTION = MACRO; RUN; 

Check your SAS log. If you see the option MACRO, then the macro processor is turned on, and you 
can use it. If you see NOMACRO there, you need to specify the MACRO option at invocation or in 
a configuration file. Specifying this type of option is system dependent. For details about how to do 
this, see your SAS Support Consultant or check the SAS Help and Documentation for your 
operating environment. 

Avoiding macro errors There’s no question about it, macros can make your head hurt.  You 
can avoid the macro migraine by developing your program in a piecewise fashion. First, write your 
program in standard SAS code. Then, when it’s bug-free, convert it to macro logic adding one 
feature at a time. This modular approach to programming is always a good idea, but it’s critical 
with macros.  

2
There are ways to force a local macro variable to become global and vice versa. See the SAS Help and Documentation for the 

SAS Macro Language  if you need to change the scope of your macro variables.  



202 The Little SAS Book

7.2  Substituting Text with Macro Variables 

Macro variables may be the most straightforward and easy-to-use part of the macro facility, yet if 
you master only this one feature of macro programming you will have greatly increased your 
flexibility as a SAS programmer. Suppose you have a SAS program that you run once a week. 
Each time you run it you have to edit the program so it will select data for the correct range of 
dates and print the correct dates in the title. This process is time-consuming and prone to errors. 
(What if you accidentally delete a semicolon?!) Instead, you can use a macro variable to insert the 
correct date. Then you can have another cup of coffee while someone else, someone who knows 
very little about SAS, runs this program for you. 

When SAS encounters the name of a macro variable, the macro processor simply replaces the 
name with the value of that macro variable. That value is a character constant that you specify. 

Creating a macro variable with %LET The simplest way to assign a value to a macro 
variable is with the %LET statement. The general form of this statement is 

%LET macro-variable-name = value;

where macro-variable-name must follow the rules for SAS variable names (32 characters or fewer 
in length; start with a letter or underscore; and contain only letters, numerals, and underscores). 
Value is the text to be substituted for the macro variable name, and can be longer than you are 
ever likely to need—almost 64,000 characters long. The following statements each create a macro 
variable.  

%LET iterations = 10; 

%LET country = New Zealand; 

Notice that unlike an ordinary assignment statement, value does not require quotation marks 
even when it contains characters. Except for blanks at the beginning and end, which are 
trimmed, everything between the equals sign and the semicolon becomes part of the value for 
that macro variable. 

Using a macro variable To use a macro variable you simply add the ampersand prefix (&) 
and stick the macro variable name wherever you want its value to be substituted. Keep in mind 
that the macro processor doesn’t look for macros inside single quotation marks. To get around 
this, simply use double quotation marks. The following statements show possible ways to use 
the macro variables defined above. 

DO i = 1 to &iterations; 

TITLE ”Addresses in &country”; 

After being resolved by the macro processor, these statements would become  

DO i = 1 to 10; 

TITLE ”Addresses in New Zealand”; 



Chapter 7: Writing Flexible Code with the SAS Macro Facility   203

Example A grower of tropical flowers records information about each sale in a raw data file.  
The data include customer ID, date of sale, variety of flower, and quantity. 

240W 02-07-2003 Ginger    120 
240W 02-07-2003 Protea    180 
356W 02-08-2003 Heliconia  60 
356W 02-08-2003 Anthurium 300 
188R 02-11-2003 Ginger     24 
188R 02-11-2003 Anthurium  24 
240W 02-12-2003 Heliconia  48 
240W 02-12-2003 Protea     48 
356W 02-12-2003 Ginger    240 

Periodically, the grower needs a report about sales of a single variety. The macro variable in this 
program allows the grower to choose one variety without editing the DATA or PROC step. Instead 
he just types the name of the variety once, in the %LET statement. 

%LET flowertype = Ginger; 

* Read the data and subset with a macro variable; 
DATA flowersales; 
   INFILE 'c:\MyRawData\TropicalSales.dat'; 
   INPUT CustomerID $ @6 SaleDate MMDDYY10.
      @17 Variety $9. Quantity; 
   IF Variety = ”&flowertype”; 

* Print the report using a macro variable; 
PROC PRINT DATA = flowersales; 
   FORMAT SaleDate WORDDATE18.; 
   TITLE ”Sales of &flowertype”; 
RUN;

The program starts with a %LET statement that creates a macro variable named &FLOWERTYPE, 
assigning to it a value of Ginger. Because the variable &FLOWERTYPE is defined outside a macro, 
it is a global macro variable and can be used anywhere in this program. In this case, the value 
Ginger is substituted for &FLOWERTYPE in a subsetting IF statement and a TITLE statement. Here 
are the results: 

                               Sales of Ginger                       1 

                 Customer 
          Obs       ID                 SaleDate    Variety    Quantity 

           1       240W        February 7, 2003    Ginger        120 
           2       188R       February 11, 2003    Ginger         24 
           3       356W       February 12, 2003    Ginger        240 

This is a short program, so using a macro variable didn’t save much trouble. However, if you had a 
program 100 or even 1,000 lines long, a macro variable could be a blessing. 



204 The Little SAS Book

7.3 Creating Modular Code with Macros 

Anytime you find yourself writing the same or similar SAS statements over and over, 
you should consider using a macro. A macro lets you package a piece of bug-free 
code and use it repeatedly within a single SAS program or in many SAS programs.  

You can think of a macro as a kind of sandwich. The %MACRO and %MEND 
statements are like two slices of bread.  Between those slices you can put any statements you want. 
The general form of a macro is 

%MACRO macro-name;
macro-text

%MEND macro-name;

The %MACRO statement tells SAS that this is the beginning of a macro, while %MEND marks the 
end. Macro-name is a name you make up, and can be up to 32 characters in length, start with a letter 
or underscore, and contain only letters, numerals, and underscores. The macro-name in the MEND 
statement is optional, but your macros will be easier to debug and maintain if you include it. That 
way there’s no question which %MACRO statement goes with which %MEND. Macro-text (also 
called a macro definition) is a set of SAS statements. 

Invoking a macro  After you have defined a macro you can invoke it by adding the percent 
sign prefix to its name like this: 

%macro-name

A semicolon is not required when invoking a macro, though adding one generally does no harm. 

Example Using the data from the previous section, this example creates a simple macro. The 

data include customer ID, date of sale, variety of flower, and quantity. 

240W 02-07-2003 Ginger    120 
240W 02-07-2003 Protea    180 
356W 02-08-2003 Heliconia  60 
356W 02-08-2003 Anthurium 300 
188R 02-11-2003 Ginger     24 
188R 02-11-2003 Anthurium  24 
240W 02-12-2003 Heliconia  48 
240W 02-12-2003 Protea     48 
356W 02-12-2003 Ginger    240 



Chapter 7: Writing Flexible Code with the SAS Macro Facility   205

The following program creates a macro named %SAMPLE to sort the data by Quantity and print 
the five observations with the largest sales. Then the program reads the data in a standard DATA 
step, and invokes the macro. 

* Macro to print 5 largest sales; 
%MACRO sample; 
   PROC SORT DATA = flowersales; 
      BY DESCENDING Quantity; 
   PROC PRINT DATA = flowersales (OBS = 5); 
      FORMAT SaleDate WORDDATE18.; 
      TITLE 'Five Largest Sales'; 
%MEND sample; 

* Read the flower sales data; 
DATA flowersales; 
   INFILE 'c:\MyRawData\TropicalSales.dat'; 
   INPUT CustomerID $ @6 SaleDate MMDDYY10. @17 
      Variety $9. Quantity; 
RUN;

* Invoke the macro; 
%sample
RUN;

Here is the output: 

                             Five Largest Sales                       1 

                Customer 
         Obs       ID                 SaleDate    Variety      Quantity 

          1       356W        February 8, 2003    Anthurium       300 
          2       356W       February 12, 2003    Ginger          240 
          3       240W        February 7, 2003    Protea          180 
          4       240W        February 7, 2003    Ginger          120 
          5       356W        February 8, 2003    Heliconia        60 

This macro is fairly limited because it does the same thing every time. To increase the flexibility of 
macros, combine them with %LET statements or add parameters as described in section 7.4. 

Macro autocall libraries The macros in this book are defined and invoked inside a single 
program, but you can also store macros in a central location, called an autocall library. Macros in a 
library can be shared by programs and programmers. Basically you save your macros as files in a 
directory or as members of a partitioned data set (depending on your operating environment), and 
use the MAUTOSOURCE and SASAUTOS= system options to tell SAS where to look for macros. 
Then you can invoke a macro even though the original macro does not appear in your program. 
For more information see the SAS Help and Documentation. 



206 The Little SAS Book

7.4 Adding Parameters to Macros 

Macros can save you a lot of trouble, allowing you to write a set of statements 
once and then use them over and over. However, you usually don’t want to 
repeat exactly the same statements. You may want the same report, but for a 
different data set, or product, or patient. Parameters allow you to do this. 

Parameters are macro variables whose value you set when you invoke a macro. 
The simplest macros, like the macro in section 7.3, have no parameters. To add 

parameters to a macro, you simply list the macro-variable names between parentheses in the 
%MACRO statement. Here is one of the possible forms of the parameter-list. 

%MACRO macro-name (parameter-1= ,parameter-2= , . . . parameter-n=); 
   macro-text
%MEND macro-name;

For example, a macro named %QUARTERLYREPORT might start like this: 

%MACRO quarterlyreport(quarter=,salesrep=); 

This macro has two parameters: &QUARTER and &SALESREP. You could invoke the macro 
with this statement: 

%quarterlyreport(quarter=3,salesrep=Smith)

The SAS macro processor would replace each occurrence of the macro variable &QUARTER with 
the value 3, and would substitute Smith for &SALESREP.  

Example  Suppose the grower often needs a report showing sales to an individual customer. 
The following program defines a macro that lets the grower select sales for a single customer and 
then sort the results. As before, the data contain the customer ID, date of sale, variety of flower, 
and quantity. 

240W 02-07-2003 Ginger    120 
240W 02-07-2003 Protea    180 
356W 02-08-2003 Heliconia  60 
356W 02-08-2003 Anthurium 300 
188R 02-11-2003 Ginger     24 
188R 02-11-2003 Anthurium  24 
240W 02-12-2003 Heliconia  48 
240W 02-12-2003 Protea     48 
356W 02-12-2003 Ginger    240 



Chapter 7: Writing Flexible Code with the SAS Macro Facility   207

The following program defines a macro named %SELECT and then invokes the macro twice. 
This macro sorts and prints the FlowerSales data, using parameters to create two macro variables 
named &CUSTOMER and &SORTVAR. 

* Macro with parameters; 
%MACRO select(customer=,sortvar=); 
   PROC SORT DATA = flowersales OUT = salesout; 
      BY &sortvar; 
      WHERE CustomerID = ”&customer”; 
   PROC PRINT DATA = salesout; 
      FORMAT SaleDate WORDDATE18.; 
      TITLE1 ”Orders for Customer Number &customer”; 
      TITLE2 ”Sorted by &sortvar”; 
%MEND select; 

* Read all the flower sales data; 
DATA flowersales; 
   INFILE ’c:\MyRawData\TropicalSales.dat’; 
   INPUT CustomerID $ @6 SaleDate MMDDYY10. @17 
      Variety $9. Quantity; 
RUN;

*Invoke the macro; 
%select(customer = 356W, sortvar = Quantity) 
%select(customer = 240W, sortvar = Variety) 
RUN;

Here is the output: 

                     Orders for Customer Number 356W                   1 
                            Sorted by Quantity 

             Customer 
      Obs       ID                 SaleDate    Variety      Quantity 

       1       356W        February 8, 2003    Heliconia        60 
       2       356W       February 12, 2003    Ginger          240 
       3       356W        February 8, 2003    Anthurium       300 

                     Orders for Customer Number 240W                   2 
                            Sorted by Variety 

              Customer 
       Obs       ID                 SaleDate    Variety    Quantity 

        1       240W        February 7, 2003    Ginger        120 
        2       240W       February 12, 2003    Heliconia      48 
        3       240W        February 7, 2003    Protea        180 
        4       240W       February 12, 2003    Protea         48 



208 The Little SAS Book

7.5 Writing Macros with Conditional Logic 

Combining macros and macro variables gives you a lot of flexibility, but you can increase 
that flexibility even more by adding macro statements such as %IF. Fortunately, many macro 
statements have parallel statements in standard SAS code so they should feel familiar. Here are 
the general forms of the statements used for conditional logic in macros: 

%IF condition %THEN action;
   %ELSE %IF condition %THEN action;
   %ELSE action;

%IF condition %THEN %DO; 
SAS statements 

%END;

These macro statements can be used only inside a macro. 

You may be wondering why anyone needs these statements. Why not just use the standard 
IF-THEN? You may indeed use standard IF-THEN statements in your macros, but you will 
use them for different actions. %IF statements can contain actions that standard IF statements 
can’t contain, such as complete DATA or PROC steps and even other macro statements. The 
%IF-%THEN statements don’t appear in the standard SAS code generated by your macro. 
Remember you are writing a program that writes a program. 

Automatic macro variables Every time you invoke SAS, the macro processor automatically 
creates certain macro variables. You can use these variables in your programs. The most common 
automatic macro variables are 

Variable name Example Description 

&SYSDATE 29MAY02 the character value of the date that job or session began 
&SYSDAY Wednesday the day of the week that job or session began  

For example, you could combine conditional logic and an automatic variable like this: 

%IF &SYSDAY = Tuesday %THEN %LET country = Belgium; 
   %ELSE %LET country = France; 

Example Using the tropical flower data again, this example shows a macro with conditional 
logic. The grower wants to print one report on Monday and a different report on Tuesday. You can 
write one program that will run either report. The raw data contain the customer ID, date of sale, 
variety of flower, and quantity. 

240W 02-07-2003 Ginger    120 
240W 02-07-2003 Protea    180 
356W 02-08-2003 Heliconia  60 
356W 02-08-2003 Anthurium 300 
188R 02-11-2003 Ginger     24 
188R 02-11-2003 Anthurium  24 
240W 02-12-2003 Heliconia  48 
240W 02-12-2003 Protea     48 
356W 02-12-2003 Ginger    240 



Chapter 7: Writing Flexible Code with the SAS Macro Facility   209

Here is the program: 

%MACRO dailyreports; 
   %IF &SYSDAY = Monday %THEN %DO; 
      PROC PRINT DATA = flowersales; 
         FORMAT SaleDate WORDDATE18.; 
         TITLE 'Monday Report: Current Flower Sales'; 
   %END; 
   %ELSE %IF &SYSDAY = Tuesday %THEN %DO; 
      PROC MEANS DATA = flowersales MEAN MIN MAX; 
         CLASS Variety; 
         VAR Quantity; 
         TITLE 'Tuesday Report: Summary of Flower Sales'; 
   %END; 
%MEND dailyreports; 

DATA flowersales; 
   INFILE 'c:\MyRawData\TropicalSales.dat'; 
   INPUT CustomerID $ @6 SaleDate MMDDYY10. @17 
      Variety $9. Quantity; 
RUN;

%dailyreports
RUN;

When the program is submitted on Tuesday, the macro processor will write this program: 

DATA flowersales; 
   INFILE 'c:\MyRawData\TropicalSales.dat'; 
   INPUT CustomerID $ @6 SaleDate MMDDYY10. @17 
      Variety $9. Quantity; 
RUN;

PROC MEANS DATA = flowersales MEAN MIN MAX; 
   CLASS Variety; 
   VAR Quantity; 
   TITLE 'Tuesday Report: Summary of Flower Sales'; 
RUN;

If you run this program on Tuesday the output will look like this: 

                    Tuesday Report: Summary of Flower Sales             1 

                               The MEANS Procedure 
                          Analysis Variable : Quantity 
                       N 
         Variety     Obs           Mean        Minimum        Maximum 
      ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
         Anthurium     2    162.0000000     24.0000000    300.0000000 
         Ginger        3    128.0000000     24.0000000    240.0000000 
         Heliconia     2     54.0000000     48.0000000     60.0000000 
         Protea        2    118.0000000     48.0000000    180.0000000 
      ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 



210 The Little SAS Book

7.6  Writing Data-Driven Programs with CALL SYMPUT 
When you submit a SAS program containing macros it goes first 
to the macro processor which generates standard SAS code from 
the macro references. Then SAS compiles and executes your 
program. Not until execution—the final stage—does SAS see 
any actual data values.  This is the tricky part of writing data-
driven programs: SAS doesn’t know the values of your data 
until the execution phase, and by that time it is ordinarily too 
late. However, there is a way to have your digital cake and eat it 
too—CALL SYMPUT. 

CALL SYMPUT takes a value from a DATA step and assigns it to a macro variable. You can then 
use this macro variable in later steps. To assign a value to a single macro variable, you use CALL 
SYMPUT with this general form: 

   CALL SYMPUT(”macro-variable-name”,value);

where macro-variable-name, enclosed in quotation marks, is the name of a macro variable, either 
new or old, and value is the value you want to assign to that macro variable. Value can be the 
name of a variable whose value SAS will use, or it can be a constant value enclosed in quotation 
marks. 

CALL SYMPUT is often used in IF-THEN statements such as this: 

   IF Age >= 18 THEN CALL SYMPUT(”status”, ”Adult”);
      ELSE CALL SYMPUT(”status”, ”Minor”);

These statements create a macro variable named &STATUS and assign to it a value of either 
Adult or Minor depending on the variable Age. The following CALL SYMPUT uses a variable as 
its value:

   IF TotalSales > 1000000 THEN CALL SYMPUT(”bestseller”, BookTitle); 

This statement tells SAS to create a macro variable named &BESTSELLER which is equal to the 
value of the variable BookTitle when TotalSales exceed 1,000,000. 

Caution You cannot create a macro variable with CALL SYMPUT and use it in the same DATA 
step because SAS does not assign a value to the macro variable until the DATA step executes. DATA 
steps execute when SAS encounters a step boundary such as a subsequent DATA, PROC, or RUN 
statement.  

Example Here are the flower sales data consisting of customer ID, date of sale, variety of 
flower, and quantity. 

240W 02-07-2003 Ginger    120 
240W 02-07-2003 Protea    180 
356W 02-08-2003 Heliconia  60 
356W 02-08-2003 Anthurium 300 
188R 02-11-2003 Ginger     24 
188R 02-11-2003 Anthurium  24 
240W 02-12-2003 Heliconia  48 
240W 02-12-2003 Protea     48 
356W 02-12-2003 Ginger    240 



Chapter 7: Writing Flexible Code with the SAS Macro Facility   211

In this example, the grower wants a program that will find the customer with the single largest 
order, and print all the orders for that customer. 

* Read the raw data; 
DATA flowersales; 
   INFILE 'c:\MySASLib\TropicalSales.dat'; 
   INPUT CustomerID $4. @6 SaleDate MMDDYY10. @17 
      Variety $9. Quantity; 
PROC SORT DATA = flowersales; 
   BY DESCENDING Quantity; 

* Find biggest order and pass the customer id to a macro variable; 
DATA _NULL_; 
   SET flowersales; 
   IF _N_ = 1 THEN CALL SYMPUT(”selectedcustomer”,CustomerID); 
   ELSE STOP; 

PROC PRINT DATA = flowersales; 
   WHERE CustomerID = ”&selectedcustomer”; 
   FORMAT SaleDate WORDDATE18.; 
   TITLE ”Customer &selectedcustomer Had the Single Largest Order”; 
RUN;

This program has a lot of steps, but each step is fairly simple. The first DATA step reads the data 
from the raw data file. Then PROC SORT sorts the data by descending Quantity. That way, the 
largest single order will be the first observation in the newly sorted data set.  

The second DATA step then uses CALL SYMPUT to assign the value of the variable CustomerID to 
the macro variable &SELECTEDCUSTOMER when _N_ equals 1 (the first iteration of the DATA 
step). Since that is all we need from this DATA step, we can use the STOP statement  to tell SAS to 
end this DATA step. The STOP statement is not necessary, but it is efficient because it prevents SAS 
from reading the remaining observations for no reason. 

When SAS reaches the PROC PRINT statement, SAS knows that the DATA step has ended so SAS 
executes the DATA step. At this point the macro variable &SELECTEDCUSTOMER has the value 
356W (the customer ID with the largest single order) and can be used in the PROC PRINT. The 
output looks like this: 

               Customer 356W Had the Single Largest Order               1 

                  Customer 
           Obs       ID                 SaleDate    Variety      Quantity 

            1       356W        February 8, 2003    Anthurium       300 
            2       356W       February 12, 2003    Ginger          240 
            5       356W        February 8, 2003    Heliconia        60 

For more information on CALL routines, see the SAS Help and Documentation. 



212 The Little SAS Book

7.7 Debugging Macro Errors 

Many people find that writing macros is not that hard. Debugging them, however, is another 
matter. This section covers techniques to ease the debugging process. 

Avoiding macro errors As much as possible, develop your program in standard SAS code 
first. Then, when it is bug-free, add the macro logic one feature at a time. Add your %MACRO 
and %MEND statements. When that’s working, add your macro variables, one at a time, and so 
on, until your macro is complete and bug-free. 

Quoting problems The macro processor doesn’t resolve macros inside single quotation 
marks. To get around this, use double quotation marks whenever you refer to a macro or macro 
variable and you want SAS to resolve it. For example, below are two TITLE statements 
containing a macro variable named &MONTH. If the value of &MONTH is January, then SAS 
will substitute January in the title with the double quotation marks, but not the title with single 
quotation marks. 

 Original statement Statement after resolution 

 TITLE ’Report for &month’; TITLE ’Report for &month’; 
 TITLE ”Report for &month”;  TITLE ”Report for January”; 

System options for debugging macros  These five system options affect the kinds of 

messages SAS writes in your log. The default settings appear in bold. 

MERROR | NOMERROR  when this option is on, SAS will issue a warning if 
you invoke a macro that SAS cannot find.  

SERROR | NOSERROR  when this option is on, SAS will issue a warning if 
you use a macro variable that SAS cannot find. 

MLOGIC | NOMLOGIC  when this option is on, SAS prints in your log 
details about the execution of macros.  

MPRINT | NOMPRINT  when this option is on, SAS prints in your log the 
standard SAS code generated by macros.  

SYMBOLGEN | NOSYMBOLGEN  when this option is on, SAS prints in your log the 
values of macro variables.  

While you want the MERROR and SERROR options to be on at all times, you will probably 
want to turn on MLOGIC, MPRINT, and SYMBOLGEN one at a time and only while you are 
debugging since they tend to make your log hard to read. To turn them on (or off), use the 
OPTIONS statement, for example: 

OPTIONS MPRINT NOSYMBOLGEN NOMLOGIC; 



Chapter 7: Writing Flexible Code with the SAS Macro Facility   213

MERROR message If SAS has trouble finding a macro, and the MERROR option is on, then 
SAS will print this message: 

WARNING: Apparent invocation of macro SAMPL not resolved. 

Check for a misspelled macro name. 

SERROR message If  SAS has trouble resolving a macro variable in open code, and the 
SERROR option is on, then SAS will print this message: 

WARNING: Apparent symbolic reference FLOWER not resolved. 

Check for a misspelled macro variable name.  If the name is spelled right, then the scope may be 
wrong. Check to see if you are using a local variable outside of its macro. See section 7.1 for 
definitions of local and global macro variables. 

MLOGIC messages When the MLOGIC option is on, SAS prints messages in your log 
describing the actions of the macro processor.  Here is a macro named %SAMPLE: 

%MACRO sample(flowertype=); 
   PROC PRINT DATA = flowersales; 
      WHERE Variety = ”&flowertype”; 
   RUN; 
%MEND sample; 

If you run %SAMPLE with the MLOGIC option, your log will look like this: 

24   OPTIONS MLOGIC; 
25   %sample(flowertype=Anthurium) 
MLOGIC(SAMPLE):  Beginning execution. 
MLOGIC(SAMPLE):  Parameter FLOWERTYPE has value Anthurium 
MLOGIC(SAMPLE):  Ending execution. 

MPRINT messages When the MPRINT option is on, SAS prints messages in your log 
showing the SAS statements generated by your macro. If you run %SAMPLE with the MPRINT 
option, your log will look like this: 

36   OPTIONS MPRINT; 
37   %sample(flowertype=Anthurium) 
MPRINT(SAMPLE):   PROC PRINT DATA = flowersales; 
MPRINT(SAMPLE):   WHERE Variety = "Anthurium"; 
MPRINT(SAMPLE):   RUN; 

SYMBOLGEN messages When the SYMBOLGEN option is on, SAS prints messages in your 
log showing the value of each macro variable after resolution. If you run %SAMPLE with the 
SYMBOLGEN option, your log will look like this: 

30   OPTIONS SYMBOLGEN; 
31   %sample(flowertype=Anthurium) 
SYMBOLGEN:  Macro variable FLOWERTYPE resolves to Anthurium



8

From “How to Write a Scientific Paper” by Robert A. Day, ASM News, vol. 41, no. 7, pp 486-494, July 1975.
Reprinted by permission of publisher and author. Also appears in How to Write and Publish a Scientific Paper
4th edition by Robert A. Day, copyright 1994 by Oryx Press.

‘‘
’’

331/3% of the mice used in
the experiment were cured by
the test drug; 331/3% of the test
population were unaffected by
the drug and remained in a
moribund condition; the third
mouse got away.

ERWIN NETER



CHAPTER 8

Using Basic Statistical Procedures 

8.1 Examining the Distribution of Data with PROC UNIVARIATE    216

8.2 Producing Statistics with PROC MEANS    218

8.3 Testing Categorical Data with PROC FREQ    220

8.4 Examining Correlations with PROC CORR    222

8.5 Using PROC REG for Simple Regression Analysis    224

8.6 Reading the Output of PROC REG    226

8.7 Using PROC ANOVA for One-Way Analysis of Variance    228

8.8 Reading the Output of PROC ANOVA    230

8.9 Graphical Interfaces for Statistical Analysis    232



216 The Little SAS Book

8.1 Examining the Distribution of Data with PROC UNIVARIATE 

When you are doing statistical analysis, you usually have a goal in mind, a question you are 
trying to answer, hypotheses you want to test. But before you jump into statistical tests, it is a 
good idea to pause and do a little exploration. A good procedure to use at this point is PROC 
UNIVARIATE. 

PROC UNIVARIATE, which is part of Base SAS software, produces statistics describing the 
distribution of a single variable. These statistics include the mean, median, mode, standard 
deviation, skewness, and kurtosis. 

Using PROC UNIVARIATE is fairly simple. After the PROC statement, you specify one or more 
numeric variables in a VAR statement: 

PROC UNIVARIATE; 
    VAR variable-list;

Without a VAR statement, SAS will calculate statistics for all numeric variables in your data set. 
You can specify other options in the PROC statement, if you wish, such as PLOT or NORMAL: 

PROC UNIVARIATE  PLOT  NORMAL; 

The NORMAL option produces tests of normality while the PLOT option produces three plots of 
your data (stem-and-leaf plot, box plot, and normal probability plot). You can use a BY statement 
to obtain separate analyses for BY groups. (Just remember to use PROC SORT first if your data 
are not already sorted by your BY variables.) 

Example The following data consist of test scores from a statistics class. Each line contains 
scores for 10 students. 

56 78 84 73 90 44 76 87 92 75 
85 67 90 84 74 64 73 78 69 56 
87 73 100 54 81 78 69 64 73 65 

This program reads the data from a file called Scores.dat and then runs PROC UNIVARIATE: 

DATA class; 
   INFILE 'c:\MyRawData\Scores.dat'; 
   INPUT Score @@; 
PROC UNIVARIATE DATA = class; 
   VAR Score; 
   TITLE; 
RUN;



Chapter 8: Using Basic Statistical Procedures 217

Here is the output: 

                       The UNIVARIATE Procedure                 1 

                           Variable:  Score 

                               Moments 
    N                         30    Sum Weights                30 
    Mean               74.633333    Sum Observations         2239 
    Std Deviation      12.584839    Variance            158.37816 
    Skewness           -0.349506    Kurtosis            0.1038576 
    Uncorrected SS        171697    Corrected SS        4592.9667 
    Coeff Variation    16.862222    Std Error Mean      2.2976666 

                      Basic Statistical Measures 

             Location                   Variability 
         Mean     74.63333     Std Deviation         12.58484 
         Median   74.50000     Variance              158.3782 
         Mode     73.00000     Range                 56.00000 
                               Interquartile Range   17.00000 

                    Tests for Location: Mu0=0.00 
           Test Statistic       Value         p-value 

           Student's t  t    32.48223    Pr > |t|   <.0001 
           Sign         M          15    Pr >= |M|  <.0001 
           Signed Rank  S       232.5    Pr >= |S|  <.0001 

                       Quantiles (Definition 5) 
                         Quantile    Estimate 
                         100% Max       100.0 
                         99%            100.0 
                         95%             92.0 
                         90%             90.0 
                         75% Q3          84.0 
                         50% Med         74.5 
                         25% Q1          67.0 
                         10%             56.0 
                         5%              54.0 
                         1%              44.0 
                         0% Min          44.0 
                         Extreme Observations 
              ------Lowest-----        -----Highest----- 
                 Value      Obs           Value      Obs 
                    44        6              87       21 
                    54       24              90        5 
                    56       20              90       13 
                    56        1              92        9 
                    64       28             100       23 

The output starts with basic information about your distribution: number of observations (N), 
mean, and standard deviation. Skewness indicates how symmetrical the distribution is (whether it 
is more spread out on one side) while kurtosis indicates how flat or peaked the distribution is. The 
normal distribution has values of zero for both skewness and kurtosis. Other sections of the output 
contain the three averages: mean, median, and mode; tests of the hypothesis that the average is 
zero; quantiles; and extreme observations (in case you have outliers). 



218 The Little SAS Book

8.2 Producing Statistics with PROC MEANS 

Most of the descriptive statistics that you produce with PROC UNIVARIATE you can also 
produce with PROC MEANS, but you have to ask for them. UNIVARIATE is useful when you 
know you want all the summary statistics: mean, variance, skewness, quantiles, extremes, t tests, 

standard error�to name a few. UNIVARIATE prints out all these things by default. But if you 
know you want only a few of these statistics then MEANS is a better way to go. With MEANS 
you can ask for just the statistics you want, and you don’t have to wade through all the other 
output to find the result you want. 

The MEANS procedure requires only one statement: 

PROC MEANS statistic-keywords;

If you do not include any statistic keywords, then MEANS will produce the mean, the number 
of non-missing values, the standard deviation, the minimum value, and the maximum value for 
each numeric variable. The following table shows statistics you can request. (Some statistics have 
two names; the alternate name is shown in parentheses.) If you add any statistic keywords in the 

PROC MEANS statement, then MEANS will no longer produce the default statistics�you must 
request them. 

CLM two-sided confidence limits  RANGE the range 
CSS corrected sum of squares SKEWNESS skewness 
CV coefficient of variation STDDEV standard deviation 
KURTOSIS kurtosis STDERR standard error of the mean 
LCLM lower confidence limit SUM the sum 
MAX maximum value SUMWGT sum of weight variables 
MEAN mean UCLM upper confidence limit 
MIN minimum value USS uncorrected sum of squares 
N number of non-missing values VAR variance 
NMISS number of missing values PROBT probability for Student’s t
MEDIAN (P50) median T Student’s t
Q1 (P25) 25% quantile Q3 (P75) 75% quantile 
P1 1% quantile P5 5% quantile 
P10 10% quantile P90 90% quantile 
P95 95% quantile P99 99% quantile 

Confidence Limits The default confidence level for the confidence limits is .05 or 95%. If 
you want a different confidence level, then request it with the ALPHA= option in the PROC 
MEANS statement. For example, if you want 90% confidence limits, then specify ALPHA=.10 
along with the CLM option. Then the PROC MEANS statement would look like this: 

PROC MEANS ALPHA=.10 CLM; 

The VAR statement By default MEANS will produce statistics for all numeric variables in 

your data set. If you do not want all the variables, then specify the ones you want in the VAR 
statement. Here is the general form of the MEANS procedure with the VAR statement: 

PROC MEANS options;
   VAR variable-list;



Chapter 8: Using Basic Statistical Procedures 219

Example Your friend is an aspiring author of children’s books. To increase her chances of 
getting her books published,  she wants to know how many pages her books should have. At the 
local library, she counts the number of pages in a random selection of children’s picture books. 
Here are the data: 

34 30 29 32 52 25 24 27 31 29 
24 26 30 30 30 29 21 30 25 28 
28 28 29 38 28 29 24 24 29 31 
30 27 45 30 22 16 29 14 16 29 
32 20 20 15 28 28 29 31 29 36 

To determine the average number of pages in children’s picture books, use the MEANS procedure. 
MEANS can also produce the median number of pages as well as the 90% confidence limits. Here is 
the program that will read the data and produce the desired statistics. 

DATA booklengths; 
   INFILE 'c:\MyRawData\Picbooks.dat'; 
   INPUT NumberOfPages @@; 
*Produce summary statistics; 
PROC MEANS DATA=booklengths N MEAN MEDIAN CLM ALPHA=.10;
   TITLE 'Summary of Picture Book Lengths'; 
RUN;

Here are the results of the MEANS procedure: 

                        Summary of Picture Book Lengths                 1 

                              The MEANS Procedure 

                      Analysis Variable : NumberOfPages 

                                             Lower 90.0%     Upper 90.0% 
       N            Mean          Median     CL for Mean     CL for Mean 
      ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
      50      28.0000000      29.0000000      26.4419136      29.5580864 
      ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

The average number of pages in the children’s books sampled was 28. The median value of 29 says 
that half the books sampled had 29 pages or fewer. The confidence limits tell us that we are 90% 
certain that the true population mean (all children’s picture books) falls between 26.44 and 29.56 
pages. From this analysis your friend concludes that she should make her books between 26 and 30 
pages long to maximize her chances of getting published (of course subject matter and writing style 
might also help). 



220 The Little SAS Book

8.3 Testing Categorical Data with PROC FREQ 

PROC FREQ, which is part of Base SAS software, produces many statistics for categorical data. 
The best known of these is chi-square, but all the tests examine the same null hypothesis, the 
hypothesis of no association between the variables. All the measures of association indicate the 
strength of the relationship between the variables. The basic form of PROC FREQ is 

PROC FREQ; 
   TABLES variable-combinations / options;

Options Here are a few of  the statistical options available:  

AGREE requests tests and measures of classification agreement including 
McNemar’s test, Bowker’s test, Cochran’s Q test, and kappa statistics 

CHISQ requests chi-square tests of homogeneity and measures of association 

CL requests confidence limits for measures of association 

CMH requests Cochran-Mantel-Haenszel statistics 

EXACT requests Fisher’s exact test for tables larger than 2X2 

MEASURES requests measures of association including Pearson and Spearman 
correlation coefficients, gamma, Kendall’s tau-b, Stuart’s tau-c, Somer’s D, 
lambda, odds ratios, risk ratios, and confidence intervals 

PLCORR requests polychoric correlation coefficient 

RELRISK requests relative risk measures for 2X2 tables 

TREND requests the Cochran-Armitage test for trend 

Example One day your neighbor, who rides the bus to work, complains that the regular bus is 
usually late. He says the express bus is usually on time. Realizing that this is categorical data, 
you decide to test whether there really is a relationship between the type of bus and arriving on 
time. You collect two variables: type of bus (E for express or R for regular) and promptness (L for 
late or O for on time).  Each line of data contains ten observations. 

E O E L E L R O E O E O E O R L R O R L 
R O E O R L E O R L R O E O E O R L E L 
E O R L E O R L E O R L E O R O E L E O 
E O E O E O E L E O E O R L R L R O R L 
E L E O R L R O E O E O E O E L R O R L 

The following program reads the raw data and runs PROC FREQ with the CHISQ option: 

DATA bus; 
   INFILE 'c:\MyRawData\Bus.dat'; 
   INPUT BusType $  OnTimeOrLate $ @@; 
PROC FREQ DATA = bus; 
   TABLES BusType * OnTimeOrLate / CHISQ; 
   TITLE; 
RUN;

The output appears on the next page. The probability of obtaining a chi-square this large or 
larger by chance alone is 0.0071 so the data do support the idea that there is a relationship 
between type of bus and arrival time. 



Chapter 8: Using Basic Statistical Procedures 221

                            The FREQ Procedure 

                   Table of BusType by OnTimeOrLate 

                    BusType     OnTimeOrLate 

                    Frequency‚ 
                    Percent  ‚ 
                    Row Pct  ‚ 
                    Col Pct  ‚L       ‚O       ‚  Total 
                    ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                    E        ‚      7 ‚     22 ‚     29 
                             ‚  14.00 ‚  44.00 ‚  58.00 
                             ‚  24.14 ‚  75.86 ‚ 
                             ‚  35.00 ‚  73.33 ‚ 
                    ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                    R        ‚     13 ‚      8 ‚     21 
                             ‚  26.00 ‚  16.00 ‚  42.00 
                             ‚  61.90 ‚  38.10 ‚ 
                             ‚  65.00 ‚  26.67 ‚ 
                    ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                    Total          20       30       50 
                                40.00    60.00   100.00 

              Statistics for Table of BusType by OnTimeOrLate 

           Statistic                     DF       Value      Prob 
           ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
           Chi-Square                     1      7.2386    0.0071 
           Likelihood Ratio Chi-Square    1      7.3364    0.0068 
           Continuity Adj. Chi-Square     1      5.7505    0.0165 
           Mantel-Haenszel Chi-Square     1      7.0939    0.0077 
           Phi Coefficient                      -0.3805 
           Contingency Coefficient               0.3556 
           Cramer's V                           -0.3805 

                            Fisher's Exact Test 
                     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                     Cell (1,1) Frequency (F)         7 
                     Left-sided Pr <= F          0.0081 
                     Right-sided Pr >= F         0.9987 

                     Table Probability (P)       0.0067 
                     Two-sided Pr <= P           0.0097 

                              Sample Size = 50 



222 The Little SAS Book

8.4 Examining Correlations with PROC CORR 

The CORR procedure, which is included with Base SAS software, computes correlations. A 
correlation coefficient measures the relationship between two variables, or how co-related they are. 
If two variables were completely unrelated they would have a correlation of zero. If they were 
perfectly correlated they would have a correlation of 1.0 or –1.0. In real life, correlations fall 
somewhere between these numbers. The basic statement for PROC CORR is rather simple: 

PROC CORR; 

These two words tell SAS to compute correlations between all the numeric variables in the most 
recently created data set. You can add the VAR and WITH statements to specify variables: 

VAR variable-list;
WITH variable-list;

Variables listed in the VAR statement appear across the top of the table of correlations, while 
variables listed in the WITH statement appear down the side of the table. If you use a VAR 
statement but no WITH statement, then the variables appear both across the top and down the 
side.

By default, PROC CORR computes Pearson product-moment correlation coefficients. You can 
add options to the PROC statement to request non-parametric correlation coefficients. The 
SPEARMAN option in the statement below tells SAS to compute Spearman’s rank correlations 
instead of Pearson’s correlations: 

PROC CORR  SPEARMAN; 

Other options include HOEFFDING (for Hoeffding’s D statistic) and KENDALL (for Kendall’s 
tau-b coefficients). Many other options are available with PROC CORR including options for 
saving statistics in an output data set. 

Example  Each student in a statistics class recorded three values: test score, the number of 

hours spent watching television in the week prior to the test, and the number of hours spent 
exercising during the same week. Here are the raw data: 

56 6 2   78 7 4   84 5 5   73 4 0   90 3 4 
44 9 0   76 5 1   87 3 3   92 2 7   75 8 3 
85 1 6   67 4 2   90 5 5   84 6 5   74 5 2 
64 4 1   73 0 5   78 5 2   69 6 1   56 7 1 
87 8 4   73 8 3  100 0 6   54 8 0   81 5 4 
78 5 2   69 4 1   64 7 1   73 7 3   65 6 2 

Notice that each line contains data for five students. The following program reads the raw data 
from a file called Exercise.dat and then uses PROC CORR to compute the correlations: 

DATA class; 
   INFILE 'c:\MyRawData\Exercise.dat'; 
   INPUT Score Television Exercise @@;



Chapter 8: Using Basic Statistical Procedures 223

PROC CORR DATA = class; 
   VAR Television Exercise; 
   WITH Score; 
   TITLE ’Correlations for Test Scores’; 
   TITLE2 ’With Hours of Television and Exercise’; 
RUN;

Here is the report from PROC CORR: 

                         Correlations for Test Scores                    1 
                    With Hours of Television and Exercise 

                              The CORR Procedure 

                   1 'WITH' Variables:  Score 
                   2 'VAR'  Variables:  Television Exercise 

                              Simple Statistics 

    Variable           N      Mean   Std Dev       Sum   Minimum   Maximum 

    Score             30   74.6333   12.5848    2239.0   44.0000     100.0 
    Television        30    5.1000    2.3393     153.0         0    9.0000 
    Exercise          30    2.8333    1.9491   85.0000         0    7.0000 

� Pearson Correlation Coefficients, N = 30 
� Prob > |R| under Ho: Rho=0 

                               Television          Exercise 

                  Score � -0.55390 � 0.79733 
� 0.0015 � 0.0001 

This report starts with descriptive statistics for each variable and then lists the correlation matrix 
which contains: �correlation coefficients (in this case, Pearson), and �the probability of getting a 
larger absolute value for each correlation. 

In this example, both hours of television and hours of exercise are correlated with test score, but 
exercise is positively correlated while television is negatively correlated. This means students who 
watched more television tended to have lower scores, while the students who spent more time 
exercising tended to have higher scores. 



224 The Little SAS Book

...
.

.
.

.
..

8.5 Using PROC REG for Simple Regression Analysis 

The REG procedure fits linear regression models by least-squares and is one of 
several SAS procedures which perform regression analysis. PROC REG is part 
of the SAS/STAT product, which is licensed separately from Base SAS software. 
We will show an example of a simple regression analysis using continuous 
numeric variables with only one regressor variable. However, PROC REG is 
capable of analyzing models with many regressor variables using a variety of 
model-selection methods including stepwise regression, forward selection, and 
backward elimination. Other procedures in SAS/STAT software will perform 
non-linear, mixed linear, and logistic regression. In SAS/ETS software you will 
find procedures for time-series analysis. If you are unsure about what type of 

analysis you need, or are unfamiliar with basic statistical principles, we recommend that you 
seek advice from a trained statistician, or consult a good statistical textbook. 

The REG procedure has only two required statements. It must start with the PROC REG 
statement and have a MODEL statement specifying the analysis model. The following shows the 
general form of the REG procedure: 

PROC REG; 
   MODEL dependent = independent;

In the MODEL statement, the dependent variable is listed on the left side of the equal sign and 
the independent, or regressor, variable on the right. 

The PLOT statement is one of many optional statements in the REG procedure. You can use the 
PLOT statement to generate scatter plots of your data, including some of the statistics generated 
by the regression analysis. If you have SAS/GRAPH software installed on your computer, then 
PROC REG will use SAS/GRAPH software's capabilities to produce plots. To produce a simple 
scatter plot of your data, along with the regression line, use the following PLOT statement if you 
have SAS/GRAPH software. 

PLOT dependent * independent;

If you do not have SAS/GRAPH software, then you will need the LINEPRINTER option in the 
PROC REG statement to produce plots. Because you cannot produce lines without SAS/GRAPH 
software, you will need to simulate the regression line by plotting the predicted values overlaid 
on the observed values. The following shows the general form of the REG procedure to produce 
a simple scatter plot of your data, along with the predicted values: 

PROC REG LINEPRINTER; 
   MODEL dependent = independent;
   PLOT dependent * independent = 'symbol' P. * independent = 'symbol'/
        OVERLAY; 

The value for symbol specifies what symbol to use to represent the data points for lineprinter 
plots. If you don’t specify a symbol, SAS will use numbers indicating how many observations fall 
in that location on the plot.  When you overlay two plots, it is best to choose two different 
symbols for the plots. The P. is the keyword for the predicted values. 



Chapter 8: Using Basic Statistical Procedures 225

We have shown you how to produce one type of plot with PROC REG. There are many options 
available to you for plotting the results of your regression analysis. For example, you can plot 
residual values, studentized residuals, Cook’s D influence statistics, and confidence intervals. If 
you have SAS/GRAPH software, then you have a lot of control over the apperance of your plot, 
and your plots will be higher quality. Check the SAS Help and Documentation for a complete list 
of options available to you for plotting with PROC REG. 

Example At your young neighbor’s T-ball game (that’s where the players hit the ball from 
the top of a tee instead of having the ball pitched to them), he said to you, “You can tell how far 
they’ll hit the ball by how tall they are.” To give him a little practical lesson in statistics, you decide 
to test his hypothesis. You gather data from 30 players, measuring their height in inches and their 
longest of three hits in feet. The following are the data. Notice that data for five players are listed 
on one line: 

50 110  49 135  48 129  53 150  48 124 
50 143  51 126  45 107  53 146  50 154 
47 136  52 144  47 124  50 133  50 128 
50 118  48 135  47 129  45 126  48 118 
45 121  53 142  46 122  47 119  51 134 
49 130  46 132  51 144  50 132  50 131 

The following program reads the data and performs the regression analysis.  It also produces a plot  
of the data, along with the regression line assuming that SAS/GRAPH software is installed: 

DATA hits; 
   INFILE 'c:\MyRawData\Baseball.dat'; 
   INPUT Height Distance @@; 
* Perform regression analysis, plot observed values with regression line; 
PROC REG DATA = hits; 
   MODEL Distance = Height; 
   PLOT Distance * Height; 
   TITLE 'Results of Regression Analysis'; 
RUN;

In the MODEL and PLOT statements, Distance is the dependent variable, and Height is the 
independent variable. The output from the above program is shown and discussed in section 8.6. 



226 The Little SAS Book

8.6 Reading the Output of PROC REG 

The output from each REG procedure has several parts.  The analysis of variance section and the 
parameter estimates usually print on the same page. Some optional statements, like PLOT, 
produce additional output on separate pages. 

The output shown in this section is the result of the following PROC REG statements from 
section 8.5: 

PROC REG DATA = hits; 
   MODEL Distance = Height; 
   PLOT Distance * Height; 
   TITLE 'Results of Regression Analysis'; 
RUN;

The first section of output is the analysis of variance section, which gives information about how 
well the model fits the data: 

                      Results of Regression Analysis                  1 

                             The REG Procedure 
                               Model: MODEL1 
                       Dependent Variable: Distance 

                           Analysis of Variance 

                                   Sum of � Mean
Source               � DF      Squares         Square �� F Value ��Pr > F 

 Model                    1    1365.50831    1365.50831      16.86 0.0003 
 Error                   28    2268.35836      81.01280 
 Corrected Total         29    3633.86667 

��Root MSE              9.00071     R-Square 0.3758 
 Dependent Mean      130.73333   � Adj R-Sq 0.3535 

��Coeff Var             6.88479 

��DF degrees of freedom associated with the source 
� Mean Square mean square (sum of squares divided by the degrees of freedom) 
� F value F value for testing the null hypothesis (all parameters are zero except intercept) 
� Pr > F significance probability 
� Root MSE root mean square error 
� Coeff Var the coefficient of variation 
� Adj R-sq the R-square value adjusted for degrees of freedom



Chapter 8: Using Basic Statistical Procedures 227

D i s t a n c e  =  - 1 1 . 0 0 9  + 2 . 8 9 4 7 H e i g h t
N
3 0
R s q
0 . 3 7 5 8
A d j R s q
0 . 3 5 3 5
R M S E
9 . 0 0 0 7

D
i
s
t
a
n
c
e

1 0 0
1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0

H e i g h t

4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3

The parameter estimates follow the analysis of variance section and give the parameters for each 
term in the model, including the intercept: 

                             Parameter Estimates 

                          Parameter       Standard 
     Variable � DF       Estimate          Error � t Value � Pr > |t| 

     Intercept     1      -11.00859       34.56363 -0.32 0.7525 
     Height        1        2.89466        0.70506 4.11 0.0003 

��DF degrees of freedom for the variable 
��t Value t test for the parameter equal to zero 
��Pr > |t| two-tailed significance probability 

From the parameter estimates you can construct the regression equation: 

Distance = -11.00859 + 2.89466 * Height 

The following figure shows the results of the PLOT statement. By default, when you have 
SAS/GRAPH software, PROC REG will plot the data points and the regression line. It will also 
print the regression equation at the top of the plot, along with some of the regression statistics 
along the right-hand side. 

In this example, the distance the ball was hit did increase with the player’s height. The model is 
significant (significance probability = .0003) but the relationship is not very strong (R-square = 
0.3758). Perhaps age or years of experience are better predictors of how far the ball will go. 



228 The Little SAS Book

8.7 Using PROC ANOVA for One-Way Analysis of Variance 

The ANOVA procedure is one of several in SAS that perform analysis of variance. PROC 
ANOVA is part of SAS/STAT software, which is licensed separately from Base SAS software. 
PROC ANOVA is specifically designed for balanced data—data where there are equal numbers 
of observations in each classification. If your data are not balanced, then you should use the 
GLM procedure, whose statements are almost identical to those of PROC ANOVA. Although we 
are only discussing simple one-way analysis of variance in this section, PROC ANOVA can 
handle multiple classification variables and models that include nested and crossed effects as 
well as repeated measures. If you are unsure of the appropriate analysis for your data, or are 
unfamiliar with basic statistical principles, we recommend that you seek advice from a trained 
statistician or consult a good statistical textbook. 

The ANOVA procedure has two required statements: the CLASS and MODEL statements. The 
following is the general form of the ANOVA procedure: 

PROC ANOVA; 
   CLASS variable-list;
   MODEL dependent = effects;

The CLASS statement must come before the MODEL statement and defines the classification 
variables. For one-way analysis of variance, only one variable is listed. The MODEL statement 
defines the dependent variable and the effects. For one-way analysis of variance, the effect is the 
classification variable.  

As you might expect, there are many optional statements for PROC ANOVA. One of the most 
useful is the MEANS statement, which calculates means of the dependent variable for any of the 
main effects in the MODEL statement. In addition, the MEANS statement can perform several 
types of multiple comparison tests including Bonferroni t tests (BON), Duncan’s multiple-range 
test (DUNCAN), Scheffe’s multiple-comparison procedure (SCHEFFE), pairwise t tests (T), and 
Tukey’s studentized range test (TUKEY). The MEANS statement has the following general form: 

MEANS effects / options;

The effects can be any main effect in the MODEL statement (no crossed or nested effects), and 
options include the name of the desired multiple comparison test (DUNCAN for example). 



Chapter 8: Using Basic Statistical Procedures 229

Example Your friend says his daughter complains that it seems like the girls on all the other 
basketball teams are taller than her team. You decide to test her hypothesis by getting the heights 
for all the girls and performing analysis of variance to see if there are any differences among teams. 
You have the team name and each girl’s height for players on five different teams. Notice that there 
are data for six girls on each line: 

red  55 red  48 red  53 red  47 red  51 red  43 
red  45 red  46 red  55 red  54 red  45 red  52 
blue 46 blue 56 blue 48 blue 47 blue 54 blue 52 
blue 49 blue 51 blue 45 blue 48 blue 55 blue 47 
gray 55 gray 45 gray 47 gray 56 gray 49 gray 53 
gray 48 gray 53 gray 51 gray 52 gray 48 gray 47 
pink 53 pink 53 pink 58 pink 56 pink 50 pink 55 
pink 59 pink 57 pink 49 pink 55 pink 56 pink 57 
gold 53 gold 55 gold 48 gold 45 gold 47 gold 56 
gold 55 gold 46 gold 47 gold 53 gold 51 gold 50 

Because each team has exactly 12 girls, the data are balanced and you can use the ANOVA 
procedure. You want to know which, if any, teams are taller than the rest, so you use the MEANS 
statement in your program and choose Scheffe’s multiple-comparison procedure to compare the 
means. Here is the program to read the data and perform the analysis of variance: 

DATA basket; 
   INFILE 'c:\MyRawData\Basketball.dat'; 
   INPUT Team $ Height @@; 
* Use ANOVA to run one-way analysis of variance; 
PROC ANOVA DATA = basket; 
   CLASS Team; 
   MODEL Height = Team; 
   MEANS Team / SCHEFFE; 
   TITLE ”Girls' Heights on Basketball Teams”; 
RUN;

In this case, Team is the classification variable and also the effect in the MODEL statement. Height 
is the dependent variable. The MEANS statement will produce means of the girls’ heights for each 
team, and the SCHEFFE option will test which teams are different from the others. The output 
from the above program is shown and discussed in section 8.8. 



230 The Little SAS Book

8.8 Reading the Output of PROC ANOVA 

PROC ANOVA has at least two parts to its output. First it prints a table giving information about 
the classification variables: number of levels, values, and number of observations. Next it prints 
the analysis of variance table. If you use optional statements like MEANS, then their output will 
follow.

The example from section 8.7, where we wanted to test to see if there are differences in the 
heights among basketball teams, used the following PROC ANOVA statements: 

PROC ANOVA DATA = basket; 
   CLASS Team; 
   MODEL Height = Team; 
   MEANS Team / SCHEFFE; 
   TITLE ”Girls’ Heights on Basketball Teams”; 
RUN;

The first page of the output gives information about the classification variable: 

                     Girls' Heights on Basketball Teams                 1 

                            The ANOVA Procedure 

                         Class Level Information 

             Class         Levels    Values 

             Team               5    blue gold gray pink red 

                       Number of observations    60 

Here the CLASS variable is Team. It has five levels with values blue, gold, gray, pink, and red 
representing the five teams. There are a total of 60 observations in the data set. 

The second part of the output is the analysis of variance table: 

                      Girls' Heights on Basketball Teams                   2 
                             The ANOVA Procedure 
 Dependent Variable: Height 

� Sum of 
��Source � DF       Squares � Mean Square � F Value � Pr > F 
 Model                     4   228.0000000    57.0000000      4.14   0.0053 
 Error                    55   758.0000000    13.7818182 
 Corrected Total          59   986.0000000 

� R-Square 	 Coeff Var 
 Root MSE � Height Mean 
             0.231237     7.279190     3.712387        51.00000 
 Source                   DF      Anova SS   Mean Square  F Value  Pr > F 
 Team                      4   228.0000000    57.0000000     4.14  0.0053 



Chapter 8: Using Basic Statistical Procedures 231

Highlights of the output are 

�� Source source of variation 
�� DF degrees of freedom for the model, error, and total 
�� Sum of Squares sum of squares for the portion attributed to the model, error, and total  
�� Mean Square mean square (sum of squares divided by the degrees of freedom) 
�� F Value F value (mean square for model divided by the mean square for error) 
�� Pr > F significance probability associated with the F statistic 
�� R-Square R-square 
	� Coeff Var coefficient of variation 

� Root MSE root mean square error  
�� Height Mean mean of the dependent variable

Because the model is significant (significance probability = .0053), we conclude that not all the 
teams are the same height.  The SCHEFFE option in the MEANS statement compares the heights 
between the teams. Letters are used to group means, and means with the same letters are not 
significantly different from each other (at the 0.05 level). The following results show that your 
friend’s daughter is partially correct—one team (PINK) is taller than her team (RED) but not all 
the teams are taller. 

                      Girls' Heights on Basketball Teams                3 

                            The ANOVA Procedure 

                         Scheffe's Test for Height 

      NOTE: This test controls the type I experimentwise error rate. 

                  Alpha                              0.05 
                  Error Degrees of Freedom             55 
                  Error Mean Square              13.78182 
                  Critical Value of F             2.53969 
                  Minimum Significant Difference   4.8306 

        Means with the same letter are not significantly different. 

          Scheffe Grouping          Mean      N    Team 

                         A        54.833     12    pink 
                         A 
                    B    A        50.500     12    gold 
                    B    A 
                    B    A        50.333     12    gray 
                    B 
                    B             49.833     12    blue 
                    B 
                    B             49.500     12    red 



232 The Little SAS Book

                  8.9    Graphical Interfaces for Statistical Analysis 

Statistical results can be obtained using traditional SAS programming statements, but there are 
also several Graphical User Interfaces which may be available to you for producing results.  We 
get you started with some of the interfaces in this section, but for more details on any of them, 
please see the SAS Help and Documentation. 

SAS Enterprise Guide  If you are using the Windows operating environment, then you may 
have access to SAS Enterprise Guide.  Starting with SAS 9, SAS Enterprise Guide comes with Base 
SAS software

1
, but it is installed separately and has a separate interface outside of the SAS 

windowing environment.  Start SAS Enterprise Guide from your Windows Start Menu.  

 In SAS Enterprise Guide, you can 
enter data, or read data from a 
variety of sources.  You can 
perform data manipulation, 
generate statistical analyses, and 
make graphs all using pull-down 
menus and windows. When you 
request statistics, SAS Enterprise 
Guide opens a window which 
steps you through setting up your 
analysis.  This figure shows the 
window that appears when you 
request a linear regression.   

SAS Enterprise Guide organizes 
information into projects containing data, 
results, code, and the SAS log.  Code 
generated by SAS Enterprise Guide can 
be edited and resubmitted, or saved for 
later use.  This figure shows a project 
consisting of a data set, a line chart and a 
linear regression.  

1 SAS Enterprise Guide requires Base SAS software and if you want to do advanced statistics and graphics, then you will also 
need SAS/STAT software and SAS/GRAPH software. 



Chapter 8: Using Basic Statistical Procedures 233

Analyst If you are using either the Windows or UNIX operating environments, then you can use 
Analyst to help you with your statistical analyses

2
.  Start the Analyst application from the Solutions 

pull-down menu in the SAS windowing environment.  In the Analyst application, you can enter 
data into tables, or you can read data from existing SAS data sets.  If you have SAS/ACCESS for 
PC File Formats software, then you 
can also read a number of PC file 
types.  You can produce results by 
choosing from a pull-down list of 
statistics, graphs, and reports.  The 
code that Analyst generates can be 
copied into the Program Editor 
where it can be saved or edited and 
submitted in SAS.  Like SAS 
Enterprise Guide, when you request 
statistics in Analyst, a window 
appears where you can specify your 
analysis.  This figure shows the 
window for a simple regression.     

Like SAS Enterprise Guide, 
Analyst organizes information 
into projects which consist of 
data, results, and the code to 
produce the results. This 
figure shows an Analyst 
project including a data set, a 
2-D scatter plot and a simple 
linear regression.  

.

SAS/LAB and SAS/INSIGHT  There are two other SAS products, SAS/LAB software and 
SAS/INSIGHT software, which provide interfaces to the statistical and graphical procedures.  
SAS/LAB software is for guided statistical analysis and is good for people who need to analyze 
data but do not have a background in statistics.  SAS/INSIGHT software is a tool for visual 
analysis of data where statistical results are displayed graphically whenever possible and 
interactive manipulation of data is possible. 

2 Analyst requires that you have Base SAS software, SAS/STAT software, and SAS/GRAPH software installed, and 
SAS/ASSIST software licensed. 



9

From My First Summer in the Sierra by John Muir. Public domain.

‘‘
’’

When we try to pick out
anything by itself, we find it
hitched to everything in the
Universe.

JOHN MUIR



CHAPTER 9

Exporting Your Data 

9.1 Methods for Exporting Your Data    236

9.2 Writing Files Using the Export Wizard    238

9.3 Writing Delimited Files with the EXPORT Procedure    240

9.4 Writing PC Files with the EXPORT Procedure    242

9.5 Writing Raw Data Files with the DATA Step    244

9.6 Writing Delimited and HTML Files using ODS    246

9.7 Sharing SAS Data Sets with Other Types of Computers    248



236 The Little SAS Book

                  9.1    Methods for Exporting Your Data 

In our ever increasingly complex world, people often need to 
transfer data from one application to another or from one type of 
computer to another.  Fortunately, SAS gives you many options for 
doing this. 

Exporting data to other applications The types of files that 
you can create and the methods available for creating those files 
depends on what operating environment you are using and whether 

you have SAS/ACCESS software. There are three general methods for exporting data to other 
applications: create delimited or text files that the other software can read; create files in 
formats like HTML, RTF, or XML that the other software can read; or write the data in the 
other software’s native format. 

�� No matter what your environment, you can always create delimited files and most 
software has the ability to read these types of data files.  The DATA step, discussed in 
section 9.5, gives you the most control over the format of your files, but requires the most 
steps.  The Export Wizard, discussed in section 9.2, and the EXPORT procedure, discussed 
in section 9.3, are easy to use, but you have less control over the result and not everyone 
has access to these tools.  The Output Delivery System (ODS), discussed in section 9.6, can 
create comma-separated values (CSV) files from any procedure output and a simple 
PROC PRINT will produce a reasonable file for importing into other programs. 

�� Using ODS, discussed in section 9.6, you can create HTML, RTF, and XML files from any 
procedure output.  Many applications can read data in these types of files.  Although we 
do not cover creating RTF and XML files for this purpose, the general method is the same 
as creating HTML files. 

�� If you have SAS/ACCESS for PC File Formats software, then you can create several 
different file types that are common for PC applications.  Both the Export Wizard, 
discussed in section 9.2, and the EXPORT procedure, discussed in section 9.4, can produce 
PC files. By creating the files in the native format of the application, you avoid the extra 
step of importing the file into the other application. There are also other SAS/ACCESS 
products for many popular database management systems including ORACLE, DB2, 
INGRES and SYBASE. If you don’t have SAS/ACCESS for PC File Formats software, and 
you are using Windows, you can use Dynamic Data Exchange (DDE) or Open Database 
Connectivity (ODBC) to move data from SAS to PC applications without creating any 
intermediate files.  For more information on using other SAS/ACCESS products, DDE, or 
ODBC to export SAS data, see the SAS Help and Documentation. 

Exporting SAS data sets to other operating environments  Since not all computers 
store data using the same representation, sometimes it is necessary to convert data from one type to 
another if you are moving your data from one operating environment to another.  The following 
are some of the available methods: Cross Environment Data Access (CEDA), the XPORT engine or 
the CPORT procedure, the XML engine, and SAS/CONNECT software. 

�� CEDA, covered in section 9.7, is by far the simplest method for moving SAS data sets to 
other operating environments.  However CEDA cannot be used for SAS Version 6 data 
sets, nor for data stored in OS/390 or z/OS bound libraries. 



Chapter 9: Exporting Your Data 237

�� Both the XPORT engine and the CPORT procedure create transport files which can be 
moved to other operating environments and then converted back into SAS data sets.  
Creating transport files can cause loss in numerical precision, but for SAS Version 6 data 
sets, or data stored in OS/390 bound libraries, CEDA is not an option so you may need to 
use one of these methods. See the SAS Help and Documentation for more information 
about the XPORT engine and the CPORT procedure. 

�� If you are using SAS 9 or later, then you can use the XML engine on the LIBNAME 
statement to create XML documents from your SAS data sets.  The XML documents can 
then be transferred to another computer and turned back into SAS data sets using the 
XML engine for input.  See the SAS Help and Documentation for more information. 

�� SAS/CONNECT software (not part of Base SAS software), along with many other 
capabilities, allows you to transfer SAS data sets to other operating environments without 
creating intermediate transport files.  SAS/CONNECT software can move SAS datasets 
from an earlier version of SAS to a later version and vice versa.  See the SAS Help and 
Documentation for more information about SAS/CONNECT software. 



238 The Little SAS Book

                 9.2    Writing Files Using the Export Wizard 

The Export Wizard
1
 provides an easy way to produce files that can be imported into other 

software
2
.  The Export Wizard is a Graphical User Interface (GUI) to the EXPORT procedure 

(discussed in sections 9.3 and 9.4) and if you only need to export data once in a while, then it’s 
easier than trying to remember the PROC EXPORT statements. 

Start the Export Wizard by selecting Export Data… from the File menu. 

In the first Export Wizard window, 
choose the library and member name 
for the SAS data set that you want to 
export.  If you are exporting a 
temporary SAS data set, then the 
library is WORK.  If you are 
exporting a permanent SAS data set, 
then make sure your library is 
defined before you start the Export 
Wizard. Then choose the library from 
the drop down list.  The member 
name is the name of the SAS data set. 

In the next window, choose the type 
of file you would like to create.  Either 
choose from the pull-down list of 
standard data sources, or check the 
box next to User-defined formats.  The 
User-defined formats takes you to the 
External File Interface (EFI) facility 
which enables you to assign formats 
to your variables, as well as choose
either a delimited file structure, or a 
file that is arranged into columns.  If 
you select one of the standard data 
sources, then any formats that you 
have assigned to variables in the SAS 
data set will be applied when creating 

the data file.  The Export Wizard always writes the variable names as the first row in the file it 
creates.  If you choose either the Microsoft Excel or Microsoft Access file types, then you will be 

1 The Export Wizard is available for the Windows, UNIX, and OpenVMS operating environments. 

2 The Export Wizard can write data files in many different formats including space-, comma-, and tab-delimited files and 
files formatted into columns. In addition, if you have SAS/ACCESS for PC File Formats software, and you are running the 
Windows operating environment, then you can also write data files in the native format of other software products such as 
Microsoft Access, dBase, Lotus, and Microsoft Excel.  UNIX users with SAS/ACCESS for PC File Formats software can create 
dBase files, and starting with SAS 9.1, UNIX users can also write Microsoft Access and Microsoft Excel files. 



Chapter 9: Exporting Your Data 239

presented with additional windows where you can make choices about table names for Microsoft 
Excel, and database information for Microsoft Access. 

In the next window you choose 
the location for the exported 
data.  If you are exporting 
delimited data, then you may 
also choose the delimiter by 
clicking on the Options button 
in this window.  If any of your 
data contain the delimiter that 
you choose, then that value will 
be enclosed in double quotation 
marks. 

In the final window you have the 
option to save the PROC EXPORT 
statements that are generated 
through the Export Wizard.   



240 The Little SAS Book

                  9.3    Writing Delimited Files with the EXPORT Procedure 

The EXPORT procedure, like the Export Wizard, is 
available for Windows, UNIX, and OpenVMS 
operating environments.  Since the Export Wizard is 
an interface to the EXPORT procedure, you can create 
the same types of files with the EXPORT procedure 
that you can with the Export Wizard.  The advantage 

of using the procedure over the wizard is that you can incorporate the procedure code into 
existing SAS programs, and you don’t need to step through all the Export Wizard windows 
every time you want to create a file. 

The EXPORT procedure  The general form of PROC EXPORT is 

PROC EXPORT DATA = data-set OUTFILE = 'filename'; 

where data-set is the SAS data set you want to export, and filename is the name you make up for 
the output data file. The following statement tells SAS to read a temporary SAS data set named 
HOTELS and write a comma-delimited file named Hotels.csv in a directory named MyRawData 
on the C drive (Windows): 

PROC EXPORT DATA = hotels OUTFILE = 'c:\MyRawData\Hotels.csv'; 

SAS uses the last part of the filename, called the file extension, to decide what type of file to 
create. You can also specify the file type by adding the DBMS= option to the PROC EXPORT 
statement. The following table shows the filename extensions and DBMS identifiers currently 
available with Base SAS software.  If you specify the DBMS option, then it takes precedence over 
the file extension. 

Type of file Extension DBMS Identifier 
Comma-delimited .csv CSV 
Tab-delimited  .txt TAB 
Space-delimited   DLM 

Notice that for space-delimited files, there is no standard extension so you must use the DBMS= 
option. The following statement, containing the DBMS= option, tells SAS to create a space-
delimited file named Hotels.spc.  The REPLACE option tells SAS to replace any file with the 
same name. 

PROC EXPORT DATA = hotels OUTFILE = 'c:\MyRawData\Hotels.spc' 
     DBMS = DLM REPLACE; 

If you want to create a file with a delimiter other than a comma, tab, or space, then you can add 
the DELIMITER statement.  If you use the DELIMITER statement, then it does not matter what 
file extension you use, or what DBMS identifier you specify, the file will have the delimiter that 
you specify in the DELIMITER statement.  For example, the following would produce a file, 
Hotels.txt, that has the ampersand (&) as the delimiter: 

PROC EXPORT DATA = hotels OUTFILE = 'c:\MyRawData\Hotels.txt' 
     DBMS = DLM REPLACE; 
  DELIMITER='&'; 

Example A travel company maintains a SAS data set containing information about golf 
courses. For each golf course the file includes its name, number of holes, par, yardage, and 
greens fees. Here is a subset of the data: 



Chapter 9: Exporting Your Data 241

Kapalua Plantation 18 73 7263 125.00 
Pukalani           18 72 6945  55.00 
Sandlewood         18 72 6469  35.00 
Silversword        18 71    .  57.00 
Waiehu Municipal   18 72 6330  25.00 
Grand Waikapa      18 72 6122 200.00 

The following program uses INFILE and INPUT statements to read the data and put them in a 
permanent SAS data set named GOLF in the MySASLib directory on the C drive (Windows). 
This example uses a LIBNAME statement to tell SAS where to store the permanent SAS data set, 
but you could use direct referencing instead: 

LIBNAME travel ’c:\MySASLib’; 
DATA travel.golf; 
   INFILE ’c:\MyRawData\Golf.dat’; 
   INPUT CourseName $18. NumberOfHoles Par Yardage GreenFees; 
RUN;

Now, suppose you want to write a letter to a potential customer and insert the golf data. The 
following program writes a plain text, tab-delimited file that you can read with any text editor or 
word processor:  

LIBNAME sports ’c:\MySASLib’; 
* Create Tab-delimited file; 
PROC EXPORT DATA = sports.golf OUTFILE = 'c:\MyRawData\Golf.txt' REPLACE; 
RUN;

Because the name of the output file ends with .txt and there is no DELIMITER statement, SAS will 
write a tab-delimited file. If you run this program, your log will contain the following note about 
the output file: 

NOTE: 7 records were written to the file 'c:\MyRawData\Golf.txt'. 

Notice that while the data set contained six observations, SAS wrote seven records. The extra 
record contains the variable names. If you read this file into a word processor and set the tabs, it 
will look like this: 

CourseName          NumberOfHoles   Par  Yardage GreenFees
Kapalua Plantation   18              73    7263      125 
Pukalani 18             72    6945     55 
Sandlewood 18 72   6469 35
Silversword         18             71 57
Waiehu Municipal     18             72 6330 25
Grand Waikapa 18             72    6122 200

Any format that you have assigned to variables in the SAS data set will be applied by PROC 
EXPORT.  If you want to change a format, use a FORMAT statement (discussed in section 4.5) in a 
DATA step before running PROC EXPORT. 



242 The Little SAS Book

                  9.4    Writing PC Files with the EXPORT Procedure 

If you are using the Windows or UNIX operating environments, and you have SAS/ACCESS 
for PC File Formats software, then you can use the EXPORT procedure to create PC file types 
in addition to delimited files.   If you are running the Windows operating environment, the 
EXPORT procedure can create Microsoft Access, Microsoft Excel, dBase, and Lotus files

1
.  If 

you are running the UNIX operating environment, then you can create dBase files, and 
starting with SAS 9.1, UNIX users can also create Microsoft Access and Microsoft Excel files.   

Microsoft Excel, Lotus and dBase files  The general form of PROC EXPORT for 
Microsoft Excel, Lotus and dBase file types  is 

PROC EXPORT DATA = data-set OUTFILE = 'filename'; 

where data-set is the SAS data set you want to export, and filename is the name you make up for 
the output data file. The following statement tells SAS to read a temporary SAS data set named 
HOTELS and write a Microsoft Excel file named Hotels.xls in a directory named MyRawData on 
the C drive (Windows): 

PROC EXPORT DATA = hotels OUTFILE = 'c:\MyRawData\Hotels.xls'; 

SAS uses the last part of the filename, called the file extension, to decide what type of file to 
create. You can also specify the file type by adding the DBMS= option. The following table 
shows the filename extensions and DBMS identifiers: 

Type of file Extension DBMS Identifier  
Microsoft Excel  .xls  EXCEL

2

    EXCEL5 
    EXCEL4 
Lotus  .wk4 WK4 
  .wk3 WK3 
  .wk1 WK1 
dBase  .dbf DBF 

The following statement, containing the DBMS= option, tells SAS to create a Microsoft Excel 5 
file named Hotels.xls. The REPLACE option tells SAS to replace any file with the same name. 

PROC EXPORT DATA = hotels OUTFILE = 'c:\MyRawData\Hotels.xls' 
   DBMS = EXCEL5 REPLACE; 

By default, the name of the Microsoft Excel sheet will be the same as the name of the SAS data set.  
If you want the sheet to have a different name, then specify it in the SHEET= statement (this 
statement is not valid for Microsoft Excel 4 or Microsoft Excel 5 files).  Special characters in sheet 
names will be converted to underscores, and the $ is not allowed at the end of the sheet name.  The 
following statement creates a sheet named Golf_Hotels: 

SHEET = 'Golf Hotels';

1 If you are running Microsoft Windows 64-Bit Edition, then you cannot export Microsoft Access or Microsoft Excel 97, 
Microsoft Excel 2000 or Microsoft Excel 2002 files. 

2 The DBMS identifiers, EXCEL, EXCEL2002, EXCEL2000, and EXCEL97 all create files in Microsoft Excel 97 format�the default 
for the .xls extension.



Chapter 9: Exporting Your Data 243

Microsoft Access files  If you want to create a  Microsoft Access database file, then instead 
of using the OUTFILE= option, you use the OUTTABLE= option and you add the DATABASE= 
statement.  The general form of PROC EXPORT for Microsoft Access files is: 

PROC EXPORT DATA = data-set OUTTABLE = 'filename' DBMS=identifier;
   DATABASE = 'filename'; 

The DATABASE statement specifies which Microsoft Access database you wish to modify or 
create and the OUTTABLE option specifies the name of the table in that database.  If you need to 
specify user IDs, passwords, or workgroups for your database, there are optional statements that 
allow you to do this. See the SAS Help and Documentation for more information. You must 
specify the DBMS option to create a Microsoft Access table.  The following table shows the 
DBMS identifiers for Microsoft Access files.  All Microsoft Access files have the .mdb extension. 

Type of file Extension DBMS Identifier  
Microsoft Access  .mdb ACCESS

3

    ACCESS97 

Example A travel company maintains a SAS data set containing information about golf 

courses. For each golf course the file includes its name, number of holes, par, yardage, and 
greens fees. Here is a subset of the data: 

Kapalua Plantation 18 73 7263 125.00 
Pukalani           18 72 6945  55.00 
Sandlewood         18 72 6469  35.00 
Silversword        18 71    .  57.00 
Waiehu Municipal   18 72 6330  25.00 
Grand Waikapa      18 72 6122 200.00 

The following program uses INFILE and INPUT statements to read the data and put them in a 
permanent SAS data set named GOLF in the MySASLib directory on the C drive (Windows).  

LIBNAME travel ’c:\MySASLib’; 
DATA travel.golf; 
   INFILE ’c:\MyRawData\Golf.dat’; 
   INPUT CourseName $18. NumberOfHoles Par Yardage GreenFees; 
RUN;

Now suppose your office mate needs that information, but she wants it in a Microsoft Excel file.  
The following program writes a Microsoft Excel file from the SAS data set GOLF. 

LIBNAME sports 'c:\MySASLib; 
* Create Microsoft Excel file'; 
PROC EXPORT DATA=sports.golf OUTFILE = 'c:\MyExcel\Golf.xls' REPLACE; 
RUN;

Here is what the Microsoft Excel file 
looks like.  Notice that the name of 
the sheet is the same as the name of 
the SAS data set. 

3
 The DBMS identifiers, ACCESS, ACCESS2002, and ACCESS2000 all create files in Microsoft Access 2000 format. 



244 The Little SAS Book

                   9.5   Writing Raw Data Files with the DATA Step 

When you need total control over the contents and 
format of raw data files that you are creating, then 
the DATA step is the way to go. Using FILE and 
PUT statements in the DATA step, you can write 
almost any form of raw data file. This method has, 
to some extent, been replaced by the easier-to-use 
PROC EXPORT

1
 and Export Wizard, but while 

PROC EXPORT gives you only a few options in formatting your files, the DATA step gives you 
flexibility to create raw data files just the way you want. 

You can write raw data the same way that you read raw data, with just a few changes. Instead of 
naming the external file in an INFILE statement, you name it in a FILE statement. Instead of 
reading variables with an INPUT statement, you write them with a PUT statement. To say it 
another way, you use INFILE and INPUT statements to get raw data into SAS, and FILE and PUT 

statements to get raw data out. 

PUT statements can be in list, column, or formatted style, just like INPUT statements, but since SAS 
already knows whether a variable is numeric or character, you don’t have to put a $ after character 
variables. If you use list format, SAS will automatically put one space between each variable, 
creating a space-delimited file. To write files with other delimiters, use a list-style PUT statement 
and the DSD and DLM= options in your FILE statement.

2

FILE ’file-specification’ DSD DLM = ’delimiter’;

If you use column or formatted styles of PUT statements, SAS will put the variables wherever you 
specify. You can control spacing with the same pointer controls that INPUT statements use: @n to 
move to column n, +n to move n columns, / to skip to the next line, #n to skip to line n, and the 
trailing @ to hold the current line. In addition to printing variables, you can insert a text string by 
simply enclosing it in quotation marks.  

Example  To show how much more control you have using the DATA step as opposed to PROC 
EXPORT, this example uses the same data containing information about golf courses. For each 
course the file includes the course name, number of holes, par, yardage, and greens fees. Here is a 
subset of the data: 

Kapalua Plantation 18 73 7263 125.00 
Pukalani           18 72 6945  55.00 
Sandlewood         18 72 6469  35.00 
Silversword        18 71    .  57.00 
Waiehu Municipal   18 72 6330  25.00 
Grand Waikapa      18 72 6122 200.00 

1
The EXPORT procedure is available on UNIX, OpenVMS, and Windows. 

2
See section 2.17 for a discussion of the DSD and DLM= options. 

raw
data
file

SAS
data
set

INFILE
INPUT

FILE
PUT

raw
data
file



Chapter 9: Exporting Your Data 245

The following program uses INFILE and INPUT statements to read the data from a file called 
Golf.dat and put it in a permanent SAS data set named GOLF in the MySASLib directory on 
the C drive (Windows).  

LIBNAME travel ’c:\MySASLib’; 
DATA travel.golf; 
   INFILE ’c:\MyRawData\Golf.dat’; 
   INPUT CourseName $18. NumberOfHoles Par Yardage GreenFees; 
RUN;

Suppose you want to put the data in a raw data file, but with only three variables, in a new order, 
and with dollar signs added to the variable GreenFees. The following program reads the SAS data 
set and writes a raw data file using FILE and PUT statements:  

LIBNAME activity ’c:\MySASLib’; 
DATA _NULL_; 
   SET activity.golf; 
   FILE ’c:\MyRawData\Newfile.dat’; 
   PUT CourseName ’Golf Course’ @32 GreenFees DOLLAR7.2 @40 ’Par ’ Par; 
RUN;

The word _NULL_ appears in the DATA statement instead of a SAS data set name. You could put 
a data set name there, but _NULL_ is a special keyword that tells SAS not to bother making a new 
SAS data set. By not writing a new SAS data set, you save computer resources. 

The SET statement simply tells SAS to read the permanent SAS data set GOLF. The FILE statement 
tells SAS the name of the output file you want to create. Then, the PUT statement tells SAS what to 
write and where. The PUT statement contains two quoted strings, “Golf Course” and “Par” which 
SAS inserts in the raw data file.  The PUT statement also tells SAS exactly where to place the data 
values for each variable using the @ column pointer, and to use the DOLLAR7.2 format to write the 
values for the GreenFees variable.  Using the PUT statement you have complete control over the 
content of your raw data files. 

If you run this program, your log will contain the following note telling how many records were 
written to the output file: 

NOTE: 6 records were written to the file ’c:\MyRawData\Newfile.dat’. 

The output file looks like this: 

Kapalua Plantation Golf Course $125.00 Par 73 
Pukalani Golf Course            $55.00 Par 72 
Sandlewood Golf Course          $35.00 Par 72 
Silversword Golf Course         $57.00 Par 71 
Waiehu Municipal Golf Course    $25.00 Par 72 
Grand Waikapa Golf Course      $200.00 Par 72 



246 The Little SAS Book

                  9.6  Writing Delimited and HTML Files Using ODS 

The Output Delivery System (ODS) is a powerful tool for creating all sorts of output formats.  
Among the various output formats that ODS can create are two, comma-separated values 
(CSV) and HyperText Markup Language (HTML), that are useful for transferring data from 
SAS to other applications

1
. Many applications can read data that are in either CSV or HTML 

format, and the great thing is that you can use this method in any operating environment and 
it’s included in Base SAS software. 

Since all procedure output goes to ODS, you can use ODS to export data by choosing the 
appropriate output destination for your application, and using PROC PRINT to get a listing of 
your data.  By default, SAS will print a period for any missing numeric data.  If you would rather 
have SAS print nothing for missing numeric data, then you can use the MISSING='  ' system 
option. Also by default, PROC PRINT includes observation numbers. If you don’t want 
observation numbers in your output file, then use the NOOBS option on the PROC PRINT 
statement. 

CSV files  Starting with SAS 9, you can use ODS to create CSV files.  CSV files have commas 
separating all the data values and the values are enclosed in double quotation marks.  The 
double quotation marks allow values to contain commas as part of the value.  To create a CSV 
file containing your data, use the following ODS statements: 

ODS CSV FILE = 'filename.csv'; 
 Your PROC PRINT statements go here 
RUN;
ODS CSV CLOSE; 

Where filename.csv is the name of the CSV file that you are creating, and you insert the 
appropriate PROC PRINT statements for your data.  The CSV output destination does not 
include titles or footnotes; if you want titles and footnotes to appear in the CSV file, then use the 
CSVALL output destination instead of CSV. 

HTML files  Use the following statements to produce an HTML file of your data (and any 
titles or footnotes) with the default style.  You can choose a different style by adding the STYLE= 
option to the ODS HTML statement. Or, if you do not want any styling, then use the CHTML 

(compact HTML�available beginning with SAS 9) output destination instead of HTML. 

ODS HTML FILE = 'filename.html'; 
 Your PROC PRINT statements go here 
RUN;
ODS HTML CLOSE; 

Example This example uses the permanent SAS data set, GOLF (created in section 9.5), which 
has information about golf courses in Hawaii.  The following program uses ODS to create a CSV 
file, golfinfo.csv, from the results of the PRINT procedure: 

LIBNAME travel 'c:\MySASLib'; 
ODS CSV FILE='c:\MyCSVFiles\golfinfo.csv'; 
PROC PRINT DATA = travel.golf; 
  TITLE 'Golf Course Information'; 
RUN;
ODS CSV CLOSE; 

1
 Extensible Markup Language (XML) is another ODS destination that is useful for data transfer.  See the SAS Help and 

Documentation for more information.



Chapter 9: Exporting Your Data 247

This is what the CSV file, golfinfo.csv, looks like if you open it in a simple editor such as Microsoft 
Notepad: 

"Obs","CourseName","NumberOfHoles","Par","Yardage","GreenFees"
"1","Kapalua Plantation","18","73","7263","125" 
"2","Pukalani","18","72","6945"," 55" 
"3","Sandlewood","18","72","6469"," 35" 
"4","Silversword","18","71","   ."," 57" 
"5","Waiehu Municipal","18","72","6330"," 25" 
"6","Grand Waikapa","18","72","6122","200" 

If you open the same file, golfinfo.csv, using Microsoft Excel, this is what you see: 

The following program creates an HTML file, golfinfo.html,
2
 of the GOLF data, this time using the 

NOOBS option on the PROC PRINT statement to eliminate the Obs column: 

LIBNAME travel 'c:\MySASLib'; 
ODS HTML FILE='c:\MyHTMLFiles\golfinfo.html'; 
PROC PRINT DATA = travel.golf NOOBS; 
   TITLE 'Golf Course Information'; 
RUN;
ODS HTML CLOSE; 

This is what the HTML file looks like when you open it Microsoft Excel.  You can see that although 
the data are the same as in the CSV file, the HTML file also includes the title and the default HTML 
styling. 

2
If you want the HTML file to be automatically recognized as a Microsoft Excel file, then give the file the .xls extension instead 

of the .html extension.



248 The Little SAS Book

9.7   Sharing SAS Data Sets with Other Types of Computers 
When you access a SAS data set

1
, SAS looks at the data 

set to determine if it is compatible with the operating 
environment that you are using.  If the data set is in a 
representation of a different operating environment, 
then SAS will automatically use Cross-Environment 
Data Access (CEDA) to dynamically translate the data 
into a form that SAS in your operating environment can 
understand.  Two cases where CEDA cannot be used 
are: SAS data sets in OS/390 or z/OS bound libraries 

and SAS Version 6 or earlier data sets. For these types of data sets see “If you can’t use CEDA” 
at the end of this section. 

Determining data representation  CEDA is so transparent that by default you don’t 
know when it is being used.  If you want to be informed as to when CEDA is being used, then 
use the following OPTIONS statement in your program: 

OPTIONS MSGLEVEL=I; 

Then a note will appear in your SAS log whenever SAS uses CEDA to access your data.  Here is 
an example of the note: 

INFO: Data set TEST.MYUNIX.DATA is in a foreign host format. Cross Environment 
Data Access will be used, which may require additional CPU resources and reduce 
performance.

The data representation is also noted in the output when you run the CONTENTS procedure on a 
SAS data set. 

Creating SAS data sets for foreign hosts  If you need to use your SAS data sets on a 
computer with a different operating environment than the one where they were created, then 
you might want to create the data sets in the representation of the other computer.  This way 
when the other computer accesses the data, it doesn’t have to waste resources translating the 
data to its own format.  You do this by using the OUTREP= option on either the LIBNAME 
statement, if you want all the data sets in that library to have the specified host representation, or 
as a data set option if you only want it to apply to one data set.  The general form for the 
LIBNAME statement is: 

LIBNAME libref 'path' OUTREP=data-representation;

The general form for the data set option is: 

data-set-name(OUTREP=data-representation)

There are many possible values for data-representation.  The data representation is basically the 
name of the operating environment.  For example if you want the data representation for the 
Microsoft Windows 64-Bit Edition, the value is: WINDOWS_64.  If you want the data 
representation for the Solaris 32-Bit Edition, the value is: SOLARIS_32 (or just SOLARIS for SAS 9 
or earlier).  See the SAS Help and Documentation for a complete list of possible values. 

Example You have data about golf courses in Hawaii stored in a permanent SAS data set 
named GOLF on your Windows desktop computer.  Your friend, who needs to use the golf data, 
is a LINUX guru and always gives you a hard time for using Windows.  You decide to send him 

1 Accessing data sets includes reading the data, and performing simple functions such as sorting, setting, or reading the data set
in a procedure.  Some functions, such as using the MODIFY statement, are not allowed. If you get an error message when trying 
to access a data set created on a different host, then convert the data set to your operating environment before continuing.



Chapter 9: Exporting Your Data 249

the data in LINUX format so you won’t get any grief for using Windows.  The following 
program uses the SET statement in a DATA step to read the GOLF data from the SPORTS 
library, then the OUTREP= data set option on the DATA statement tells SAS to write the data in 
LINUX format creating a SAS data set named GOLFLINUX. 

OPTIONS MSGLEVEL=I;
LIBNAME sports 'c:\MySASLib; 
DATA sports.golflinux(OUTREP=LINUX); 
  SET sports.golf; 
RUN;

The system option MSGLEVEL=I causes the following note to be added to the SAS log informing 
you that CEDA was used to create the GOLFLINUX data set. 

INFO: Data set SPORTS.GOLFLINUX.DATA is in a foreign host format. Cross 
Environment Data Access will be used, which may require additional CPU resources 
and reduce performance.

Moving SAS data sets   If both computers have access to the same file system, then simply 
point your LIBNAME statement to the directory where the SAS data set is located.  Otherwise 
you can transfer the SAS data set using FTP (File Transfer Protocol) in binary mode, or use an 
external media such as a floppy disk, or CD.

FAT file systems  SAS data sets created beginning with SAS Version 7 by default have the 
extension .sas7bdat. Some Windows systems which use FAT (File Allocation Table) file systems 
can only have files with three-character extensions, so for these systems the extension for SAS 
data sets is .sd7.  If you receive a SAS data set with a three letter extension, or if you need to 
create a SAS data set with a three letter extension, then use the SHORTFILEEXT option on the 
LIBNAME statement for the data set. 

LIBNNAME libref 'path' SHORTFILEEXT; 

If you can’t use CEDA  If you need to read a SAS Version 6 data set that was created in a 
different operating environment, or if you are using SAS data sets in bound libraries in the 
OS/390 or z/OS operating environments, then you will not be able to use CEDA.  In these cases, 
you will either need to create a SAS data set in transport format, create an XML document using 
the XML engine, or use SAS/CONNECT software to transfer data.  You can use either the 
XPORT engine or PROC CPORT to create transport files. Transport files created using the 
XPORT engine must be read with the XPORT engine and files created with PROC CPORT must 
be read with PROC CIMPORT.  The drawbacks to using transport files are that: extra steps are 
needed to create and read the files, they do not support variable names over 8 characters, and 
you can lose precision in numeric data.  Creating XML documents will preserve your long 
variable names, but you must have SAS 9 or higher to read the XML documents. 
SAS/CONNECT software does not create an intermediate file, but it is an add-on product and 
not every one has it.  See the SAS Help and Documentation for more information on transport 
files, the XML engine, and SAS/CONNECT software. 



10

From The Official Explanations by Paul Dickson. Copyright 1980 by Delacorte Press.
Reprinted by permission of the publisher.

‘‘ ’’
Problems that go away by

themselves come back by
themselves.

MARCY E. DAVIS



CHAPTER 10

Debugging Your SAS� Programs 

10.1 Writing SAS Programs That Work    252

10.2 Fixing Programs That Don’t Work    254

10.3 Searching for the Missing Semicolon    256

10.4 Note: INPUT Statement Reached Past the End of the Line    258

10.5 Note: Lost Card    260

10.6 Note: Invalid Data    262

10.7 Note: Missing Values Were Generated    264

10.8 Note: Numeric Values Have Been Converted to Character (or Vice Versa)    266

10.9 DATA Step Produces Wrong Results but No Error Message    268

10.10 The DATA Step Debugger    270

10.11 Error: Invalid Option, Error: The Option Is Not Recognized,  

            or Error: Statement Is Not Valid    272

10.12 Note: Variable Is Uninitialized or Error: Variable Not Found    274

10.13 SAS Truncates a Character Variable    276

10.14 SAS Stops in the Middle of a Job    278

10.15 SAS Runs Out of Memory or Disk Space    280



252 The Little SAS Book

10.1 Writing SAS Programs That Work 

It’s not always easy to write a program that works the first time you run it. Even experienced 
SAS programmers will tell you it’s a delightful surprise when their programs run on the first try. 
The longer and more complicated the program, the more likely it is to have syntax or logic 
errors. But don’t despair, there are a few guidelines you can follow that can make your programs 
run correctly sooner and help you discover errors more easily. 

Make programs easy to read  One simple thing you can do is develop the habit of writing 

programs in a neat and consistent manner. Programs that are easy to read are easier to debug 
and will save you time in the long run. The following are suggestions on how to write your 
programs: 

�� Put only one SAS statement on a line. SAS allows you to put as many statements on a 
line as you wish, which may save you some space in your program, but the saved space 
is rarely worth the sacrifice in readability. 

�� Use indention to show the different parts of the program. Indent all statements within 
the DATA and PROC steps. This way you can tell at a glance how many DATA and 
PROC steps there are in a program and which statement belongs to which step. It’s also 
helpful to further indent any statements between a DO statement and its END 
statement.  

�� Use comment statements generously to document your programs. This takes some 
discipline but is important, especially if anyone else is likely to read or use your 
program. Everyone has a different programming style, and it is often impossible to 
figure out what someone else’s program is doing and why. Comment statements take 
the mystery out of the program. 

Test each part of the program You can increase your programming efficiency 
tremendously by making sure each part of your program is working before moving on to write 
the next part. If you were building a house, you would make sure the foundation was level and 
square before putting up the walls. You would test the plumbing before finishing the bathroom. 
You are required to have each stage of the house inspected before moving on to the next. The 
same should be done for your SAS program. But you don’t have to wait for the inspector to come 
out; you can do it yourself. 

If you are reading data from a file, use PROC PRINT to print the SAS data set at least once to 
make sure it is correct before moving on. Sometimes, even though there are no errors or even 
suspicious notes in your SAS log, the SAS data set is not correct. This could happen because SAS 
did not read the data the way you imagined (after all it does what you say, not what you’re 
thinking) or because the data had some peculiarities you did not realize. For example, a 
researcher who received two data files from Taiwan wanted to merge them together by date. 
She could not figure out why they refused to merge correctly until she printed both data sets and 
realized one of the files used Taiwanese dates, which are offset by 11 years. 

It’s a good habit to print all the SAS data sets you create in a program at least once to make sure 
they are correct. As with reading raw data files, sometimes merging and setting data sets can 
produce the wrong result even though there were no error messages. So when in doubt, use 
PROC PRINT. 



Chapter 10: Debugging Your SAS Programs 253

Test programs with small data sets  Sometimes it’s not practical to test your program with 
your entire data set. If your data files are very large, you may not want to print all the data and it 
may take a long time for your programs to run. In these cases, you can test your program with a 
subset of your data. 

If you are reading data from a file, you can use the OBS= option in the INFILE statement to tell SAS 
to stop reading when it gets to that line in the file. This way you can read only the first 50 or 100 
lines of data or however many it takes to get a good representation of your data. The following 
statement will read only the first 100 lines of the raw data file Mydata.Dat: 

INFILE 'Mydata.Dat' OBS = 100; 

You can also use the FIRSTOBS= option to start reading from the middle of the data file. So, if the 
first 100 data lines are not a good representation of your data but 101 through 200 are, you can use 
the following statement to read just those lines: 

INFILE 'Mydata.Dat' FIRSTOBS = 101 OBS = 200; 

Here FIRSTOBS= and OBS= relate to the records of raw data in the file. These do not necessarily 
correspond to the observations in the SAS data set created. If, for example, you are reading two 
records for each observation, then you would need to read 200 records to get 100 observations. 

If you are reading a SAS data set instead of a raw data file, you can use the OBS= and FIRSTOBS= 
data set options in the SET, MERGE, or UPDATE statements.

1
 This controls which observations are 

processed in the DATA step. For example, the following DATA step will read the first 50 observa-
tions in the CATS data set. Note that when reading SAS data sets OBS= and FIRSTOBS= truly do 
correspond to the observations and not to data lines: 

DATA sampleofcats; 
   SET cats (OBS = 50); 

Test with representative data Using OBS= and FIRSTOBS= is an easy way to test your 
programs, but sometimes it is difficult to get a good representation of your data this way. You may need 
to create a small test data set by extracting representative parts of the larger data set. Or you may want 
to make up representative data for testing purposes. Making up data has the advantage that you can 
simplify the data and make sure you have every possible combination of values to test.  

Sometimes you may want to make up data and write a small program just to test one aspect of 
your larger program. This can be extremely useful for narrowing down possible sources of error in 
a large, complicated program. 

Syntax sensitive editors In the Windows operating environment the Enhanced Editor is the 
default editor; in other operating environments the Program Editor is the default. Both the 
Enhanced Editor and the Program Editor (starting with SAS 9) color code your program as you 
write it.

2
 SAS keywords appear in one color, variables in another. All text within quotation marks 

appears in the same color, so it is immediately obvious when you forget to close your quotation 
marks. Similarly, missing semicolons are much easier to discover because the colors in your 
program are not right. Catching errors as you type them can be a real time saver. 

1
Data set options are discussed in section 6.9. 

2
 If you are not using Windows, and you do not have SAS 9, you may still be able to use the color coding feature. In the OS/390 

and  z/OS operating environments, the color coding feature became the default starting with SAS 8.2. In UNIX the color-coding 
feature became available with SAS 8.2 but may not be the default. 



254 The Little SAS Book

10.2 Fixing Programs That Don’t Work 

In spite of your best efforts, sometimes programs just don’t work. More often than 
not, programs don’t run the first time. Even with simple programs it is easy to 
forget a semicolon or misspell a keyword—everyone does sometime. If your 
program doesn’t work, the source of the problem may be obvious like an error 
message with the offending part of your program underlined, or not so obvious as 
when you have no errors but still don’t have the expected results. Whatever the 

problem, here are a few guidelines you can follow to help fix your program. 

Read the SAS log The SAS log has a wealth of information about your program. In addition 
to listing the program statements, it tells you things like how many lines were read from your 
raw data file and what were the minimum and maximum line lengths. It gives the number of 
observations and variables in each SAS data set you create. Information like this may seem 
inconsequential at first but can be very helpful in finding the source of your errors. 

The SAS log has three types of messages about your program: errors, warnings, and notes. 

Errors These are hard to ignore. Not only do they come up in red on your screen, but your 
program will not run with errors. Usually errors are some kind of syntax or spelling mistake. 
The following shows the error message when you accidentally add a slash between the PROC 
PRINT and DATA= keywords. SAS underlines the problem (the slash) and tells you there is a 
syntax error.  Sometimes SAS will tell you what  is expected in the location where the error 
occurred and often this is very revealing. 

1    PROC PRINT / DATA=one; 
                - 
                22 
                  ---- 
                  202 
ERROR 22-322: Syntax error, expecting one of the following: ;, DATA, DOUBLE, 
HEADING, LABEL, N, NOOBS, OBS, ROUND, ROWS, SPLIT, STYLE, UNIFORM, WIDTH. 
ERROR 202-322: The option or parameter is not recognized and will be ignored. 

The location of the error is easy to find, because it is usually underlined, but the source of the 
error can sometimes be tricky. Sometimes what is wrong is not what is underlined but something 
else earlier in the program.  

Warnings These are less serious than errors because your program will run with warnings. 
But beware, a warning may mean that SAS has done something you have not intended. For 
example, SAS will attempt to correct your spelling of certain keywords. If you misspell INPUT 
as IMPUT you will get the following message in your log: 

WARNING 1-322: Assuming the symbol INPUT was misspelled as IMPUT. 

Usually you would think, “SAS is so smart—it knows what I meant to say,” but occasionally that 
may not be what you meant at all. Make sure that you know what all the warnings are about and 
that you agree with them. 

Notes  These are less straightforward than either warnings or errors. Sometimes notes just give 
you information, like telling you the execution time of each step in your program. But sometimes 



Chapter 10: Debugging Your SAS Programs 255

notes can indicate a problem. Suppose, for example, that you have the following note in your 
SAS log: 

NOTE: SAS went to a new line when INPUT statement reached past the end of a line.

This could mean that SAS did exactly what you wanted, or it could indicate a problem with either 
your program or your data. Make sure that you know what each note means and why it is there. 

Start at the beginning Whenever you read the SAS log, start at the beginning. This seems like 
a ridiculous statement—why wouldn’t you start at the beginning? Well, if you are using the SAS 
windowing environment, the SAS log rolls by in the Log window. When the program is finished, 
you are left looking at the end of the log. If you happen to see an error at the end of the log, it is 
natural to try to fix that error first—the first one you see. Avoid this temptation. Often errors at the 
end of the log are caused by earlier ones. If you fix the first error, often most or all of the other 
errors will disappear. If your lawnmower is out of gas and won’t start, it’s probably better to add 
gas before trying to figure out why it won’t start. The same logic applies to debugging SAS 
programs; fixing one problem will often fix others. 

Look for common mistakes first More often than not there is a simple reason why 
your program doesn’t work. Look for the simple reason before trying to find something            
more complicated. The remainder of this chapter consists of sections discussing the 
most common errors encountered in SAS programming. When you see this little bug   
in the upper-right corner of a section, you’ll know that the material deals with how     
to debug your program. Some programming errors produce error messages, some                         
just notes. If your SAS log contains an error or a suspicious note, look in this chapter                               
for a section which discusses your error or note.  

Sometimes error messages just don’t make any sense. For example, you may get an error message 
saying the INPUT statement is not valid. This doesn’t make much sense because you know INPUT 
is a valid SAS statement. In cases like these, look for missing semicolons in the statements before 
the error. If SAS has underlined an item, be sure to look not only at the underlined item but also at 
the previous few statements. 

Finally, if you just can’t figure out why you are not getting the results you expect, make sure you 
add PROC PRINT statements everywhere you create a new SAS data set. This can really help you 
discover errors in your logic, and sometimes uncover surprising details about your data. 

Check your syntax If you have large data sets, you may want to check for syntax errors in 
your program before processing your data. Do this by telling SAS not to process any data when 
you submit your program. Add the following line to your program and submit it in the usual way: 

OPTIONS OBS=0 NOREPLACE; 

The OBS=0 option tells SAS not to process any data, while the NOREPLACE option tells SAS not to 
replace existing SAS data sets with empty ones.  Once you know your syntax is correct, you can 
resubmit your program without the OPTIONS statement in batch mode, or replace the OPTIONS 
with the following if you are using the SAS windowing environment. 

OPTIONS OBS=MAX REPLACE; 

Remember that this syntax check will not uncover any errors related to your data or logic errors. 



256 The Little SAS Book

s ;DATA toad

10.3 Searching for the Missing Semicolon 

Missing semicolons are the most common source of errors in SAS programs. 
For whatever reason, we humans can’t seem to remember to put a semicolon 
at the end of all our statements. (Maybe we all have rebellious right pinkies—
who knows.) This is unfortunate because, while it is easy to forget the 
semicolon, it is not always easy to find the missing semicolon. The error 
messages produced are often misleading, making it difficult to find the error. 

SAS reads statements from one semicolon to the next without regard to 
the layout of the program. If you leave off a semicolon, you in effect 

concatenate two SAS statements. Then SAS gets confused because it seems as though you are 
missing statements, or it tries to interpret entire statements as options in the previous statement. 
This can produce some very puzzling messages. So, if you get an error message that just doesn’t 
make sense, look for missing semicolons. 

Example The following program is missing a semicolon on the comment statement before the 
DATA statement: 

* Read the data file ToadJump.dat using list input 
DATA toads; 
   INFILE 'c:\MyRawData\ToadJump.dat'; 
   INPUT ToadName $ Weight Jump1 Jump2 Jump3; 
RUN;

Here is the SAS log after the program has run: 

1    * Read the data file ToadJump.dat using list input 
2    DATA toads; 
3       INFILE 'c:\MyRawData\ToadJump.dat'; 
        ------ 
        180 

ERROR 180-322: Statement is not valid or it is used out of proper order. 

4       INPUT ToadName $ Weight Jump1 Jump2 Jump3; 
        ----- 
        180 

ERROR 180-322: Statement is not valid or it is used out of proper order. 

5    RUN; 

In this case, DATA toads becomes part of the comment statement. Because there is now no 
DATA statement, SAS underlines the INFILE and INPUT keywords and says, “Hey these 
statements are in the wrong place; they have to be part of a DATA step.” This doesn’t make 
much sense to you because you know INFILE and INPUT are valid statements, and you did put 
them in a DATA step (or so you thought). That’s when you should suspect a missing semicolon. 



Chapter 10: Debugging Your SAS Programs 257

Example  The next example shows the same program, but now the semicolon is missing 
from the DATA statement. The INFILE statement becomes part of the DATA statement, and 
SAS tries to create a SAS data set named INFILE.  SAS also tries to interpret the filename, 
‘c:\MyRawData\ToadJump.dat’ as a SAS data set name, but the .dat extension is not valid for 
SAS data sets. It also gives you an error saying that there is no DATALINES or INFILE statement. 
In addition, you get some warnings about data sets being incomplete. This is a good example of 
how one simple mistake can produce a lot of confusing messages: 

30   * Read the data file ToadJump.dat using list input; 
31   DATA toads 
32     INFILE 'C:\MyRawData\ToadJump.dat'; 
33     INPUT ToadName $ Weight Jump1 Jump2 Jump3; 
34   RUN; 

ERROR: No DATALINES or INFILE statement. 
ERROR: Extension for physical file name "C:\MyRawData\ToadJump.dat" does not 
correspond to a valid member type. 
NOTE: The SAS System stopped processing this step because of errors. 
WARNING: The data set WORK.TOADS may be incomplete.  When this step was stopped 
there were 0 observations and 5 variables. 
WARNING: Data set WORK.TOADS was not replaced because this step was stopped. 
WARNING: The data set WORK.INFILE may be incomplete.  When this step was stopped 
there were 0 observations and 5 variables. 
WARNING: Data set WORK.INFILE was not replaced because this step was stopped. 

Missing semicolons can produce a variety of error messages. Usually the messages say that either a 
statement is not valid, or an option or parameter is not valid or recognized. Sometimes you don’t 
get an error message, but the results are still not right. If you leave off the semicolon from the last 
RUN statement when submitting programs in the SAS windowing environment, you won’t get an 
error. But SAS won’t run the last part of your program either. 

The DATASTMTCHK system option Some missing semicolons, such as the one in the 
last example, are easier to find if you use the DATASTMTCHK system option. This option controls 
what names you can use for SAS data sets in a DATA statement. By default it is set so that you 
cannot use the words: MERGE, RETAIN, SET, or UPDATE as a SAS data set name. This prevents 
you from accidentally overwriting an existing data set just because you forget a semicolon at the 
end of a DATA statement. You can make all SAS keywords invalid SAS data set names by setting 
the DATASTMTCHK option to ALLKEYWORDS. The partial log below again shows a missing 
semicolon at the end of the DATA statement, but this time DATASTMTCHK is set to 
ALLKEYWORDS: 

35   OPTIONS DATASTMTCHK=ALLKEYWORDS; 
36   * Read the data file ToadJump.dat using list input; 
37   DATA toads 
38     INFILE 'C:\MyRawData\ToadJump.dat'; 
       ------ 
       57 
ERROR 57-185: INFILE is not allowed in the DATA statement when option 
DATASTMTCHK=ALLKEYWORDS.  Check for a missing semicolon in the DATA statement, 
or use DATASTMTCHK=NONE. 

39     INPUT ToadName $ Weight Jump1 Jump2 Jump3; 
40   RUN; 



258 The Little SAS Book

bears
input lions tigers

10.4 Note: INPUT Statement Reached Past the End of the Line 

The note “SAS went to a new line when INPUT statement reached past 
the end of a line” is rather innocent looking, but its presence can indicate a 
problem. This note often goes unnoticed. It doesn’t come up in red or even 
green lettering. It doesn’t cause your program to stop. But look for it in 
your SAS log because it is a common note that usually means there is a 
problem. 

This note means that as SAS was reading your data, it got to the end of 
the data line before it read values for all the variables in your INPUT 
statement. When this happens, SAS goes by default to the next line of data 

to get values for the remaining variables. Sometimes this is exactly what you want SAS to do, but if it’s 
not, take a good look at your SAS log and output to be sure you know why this is happening. 

Look in your SAS log where it tells you the number of lines it read from the data file and the number 
of observations in the SAS data set. If you have fewer observations than lines read, and you planned 
to have one observation per line, then you know you have a problem. Print the SAS data set using 
PROC PRINT. This can be very helpful in determining the source of the problem. 

Example The following shows what can happen if you are using list input, and you don’t have 
periods for missing values. You have the following data from the toad-jumping contest, where the 
toad’s number is followed by its weight and distances for each of three jumps. When a toad was 
disqualified from a jump, no entry was made for that jump: 

13  65 1.9 3.0 
25 131 2.5 3.1 .5 
10 202 3.8 
8  128 3.2 1.9 2.6 
3  162 
21  99 2.4 1.7 3.0 

The following is the SAS log from a program that reads the raw data using list input and prints the 
results using PROC PRINT: 

1   DATA toads; 
2      INFILE ’c:\MyRawData\Toadjmp2.dat’; 
3      INPUT ToadNumber Weight Jump1 Jump2 Jump3; 

NOTE: The infile ’c:\MyRawData\Toadjmp2.dat’ is: 
      File Name=c:\MyRawData\Toadjmp2.dat, 
      RECFM=V,LRECL=256 

�NOTE: 6 records were read from the infile ’c:\MyRawData\Toadjmp2.dat’. 
  The minimum record length was 6. 
  The maximum record length was 18. 
�NOTE: SAS went to a new line when INPUT statement reached past the end of a line. 
�NOTE: The data set WORK.TOADS has 3 observations and 5 variables. 
 NOTE: DATA statement used (Total process time): 
 real time           0.37 seconds 
4   PROC PRINT; 
5      TITLE ’SAS Data Set Toads’;

� Notice that there were six records read from the raw data file. 

� But, there are only three observations in the SAS data set.

� The note, “… INPUT statement reached past the end of a line,” should alert you that there may be a 
      problem. 



Chapter 10: Debugging Your SAS Programs 259

A look at the results of the PROC PRINT confirms that there is a problem since the numbers don’t 
look at all correct. (Can a toad jump 128 meters?) 

                            SAS Data Set Toads                        1 

                    Toad 
            Obs    Number    Weight    Jump1    Jump2    Jump3 

             1       13         65       1.9       3      25.0 
             2       10        202       3.8       8     128.0 
             3        3        162      21.0      99       2.4 

Here SAS went to a new line when you didn’t want it to. To fix this problem, the simplest thing to 
do is use the MISSOVER option in the INFILE statement. MISSOVER instructs SAS to assign 
missing values to any variables for which there were no data instead of going to the next line for 
data. The INFILE statement would look like this: 

INFILE 'c:\MyRawData\Toadjmp2.dat' MISSOVER; 

Possible causes  Other reasons for receiving a note informing you that the INPUT statement 
reached past the end of the line include 

�� You planned for SAS to go to the next data line when it ran out of data. 

�� Blank lines in your data file, usually at the beginning or end, can cause this note. Look at 
the minimum line length in the SAS log. If it is zero, then you have blank lines. Edit out 
the blank lines and rerun your program. 

�� If you are using list input and you do not have a space between every value, you can get 
this note. For example, if you try to read the following data using list input, SAS will run 
out of data for the Gilroy Garlics because there is no space between the 15 and the 1035. 
SAS will read it as one number, then read the 12 where it should have been reading the 
1035, and so on. To correct this problem, either add a space between the two numbers, or 
use column or formatted input. 

Columbia Peaches      35  67  1 10  2  1 
Gilroy Garlics        151035 12 11  7  6 
Sacramento Tomatoes  124  85 15  4  9  1 

�� If you have some data lines which are shorter than the rest, and you are using column or 
formatted input, this can cause a problem. If you try to read a name, for example, in 
columns 60 through 70 when some of the names extend only to column 68, and you didn’t 
add spaces at the end of the line to fill it out to column 70, then SAS will go to the next line 
to read the name. To avoid this problem, use the TRUNCOVER option in the INFILE 
statement (discussed in section 2.14). For example: 

INFILE 'c:\MyRawData\Addresses.dat' TRUNCOVER; 



260 The Little SAS Book

�
A

� 10

�
J�

K

10.5 Note: Lost Card  

Lost card? You thought you were writing SAS programs, not 
playing a card game. This note makes more sense if you 
remember that computer programs and data used to be 
punched out on computer cards. A lost card means that SAS 
was expecting another line (or card) of data and didn’t find it. 

If you are reading multiple lines of data for each observation, 
then a lost card could mean you have missing or duplicate 
lines of data. If you are reading two data lines for each 
observation, then SAS will expect an even number of lines in 
the data file. If you have an odd number, then you will get 
the lost-card message. It can often be difficult to locate the 

missing or duplicate lines, especially with large data files. Printing the SAS data set as well as 
careful proofreading of the data file can be helpful in identifying problem areas. 

Example The following example shows what can happen if you have a missing data line. The 
raw data show the normal high and low temperatures and the record high and low for the 
month of July for each city. The last city is missing the last data line: 

Nome AK 
55 44 
88 29 
Miami FL 
90 75 
97 65 
Raleigh NC 
88 68 

The following shows the SAS log from a program which reads the data, three lines per 
observation: 

1   DATA highlow; 
2      INFILE ’c:\MyRawData\Temps.dat’; 
3      INPUT City $ State $ / NormalHigh NormalLow/ RecordHigh RecordLow; 

NOTE: The infile ’c:\MyRawData\Temps.dat’ is: 
      File Name=c:\MyRawData\Temps.dat, 
      RECFM=V,LRECL=256 

NOTE: LOST CARD. 
City=Raleigh State=NC NormalHigh=88 NormalLow=68 RecordHigh=. RecordLow=. 
_ERROR_=1 _N_=3 
NOTE: 8 records were read from the infile ’c:\MyRawData\Temps.dat’. 
      The minimum record length was 5. 
      The maximum record length was 10. 
NOTE: The data set WORK.HIGHLOW has 2 observations and 6 variables. 
NOTE: DATA statement used (Total process time): 
      real time           0.03 seconds 
      cpu time            0.03 seconds 

In this case, you get the lost-card note, and SAS prints the values of the variables it read for the 
observation with the lost card. The observation is not included in the SAS data set. You can see 



Chapter 10: Debugging Your SAS Programs 261

from the log that SAS read eight records from the file (it should have been a multiple of three) 
but the SAS data set has only two observations. The last partial observation was not included. 

Example It is very common to get other messages along with the lost-card note. The invalid-data 

note is a common byproduct of the lost card. If the second line were missing from the temperature 
data, then you would get invalid data as well as a lost card because SAS will try to read Miami FL 
as the record high and low. The following shows the invalid-data note from the SAS log: 

Nome AK 
88 29 
Miami FL 
90 75 
97 65 
Raleigh NC 
88 68 
105 50 

NOTE: Invalid data for RecordHigh in line 3 1-5. 
NOTE: Invalid data for RecordLow in line 3 7-8. 
RULE:     ----+----1----+----2----+----3----+----4----+----5----+----6----+ 
3         Miami FL
City=Nome State=AK NormalHigh=88 NormalLow=29 RecordHigh=. RecordLow=. 
_ERROR_=1 _N_=1 

Example In addition to getting the lost-card note, it is also common to get a note indicating that 
the INPUT statement reached past the end of a line. If you forgot the last number in the file, as in 
the following example, then you would get these two notes together: 

Nome AK 
55 44 
88 29 
Miami FL 
90 75 
97 65 
Raleigh NC 
88 68 
105

Because the program uses list input, SAS will try to go to the next line to get the data for the last 
variable. Since there isn’t another line of data, you get the lost-card note. The following is part of 
the SAS log showing these two messages together: 

NOTE: LOST CARD. 
City=Raleigh State=NC NormalHigh=88 NormalLow=68 RecordHigh=105 RecordLow=. 
_ERROR_=1 _N_=3 
NOTE: 9 records were read from the infile 
      ’c:\MyRawData\Temps3.dat’. 
      The minimum record length was 3. 
      The maximum record length was 10. 
NOTE: SAS went to a new line when INPUT statement reached past the end of a line. 
NOTE: The data set WORK.HIGHLOW has 2 observations and 6 variables. 

For this example, the solution is to add the missing data to the raw data file and rerun the program. 



262 The Little SAS Book

10.6 Note: Invalid Data 

The typical new SAS user, upon seeing the invalid-data note, will ignore it, hoping 
perhaps that it will simply go away by itself. That’s rather ironic considering that the message is 
explicit and easy to interpret once you know how to read it. 

Interpreting the message The invalid-data note appears when SAS is unable to read 
from a raw data file because the data are inconsistent with the INPUT statement. This note 
almost always indicates a problem. For example, one common mistake is typing in the letter O 
instead of the number 0. If the variable is numeric, then SAS is unable to interpret the letter O. 
In response, SAS does two things; it sets the value of this variable to missing and prints out a 
message like this for the problematic observation: 

� NOTE: Invalid data for IDNumber in line 8 1-5. 
� RULE:----+----1----+----2----+----3----+----4----+----5----+----6----+
� 8    0O7  James Bond    SA341 

� IDNumber=. Name=James Bond Class=SA Q1=3 Q2=4 Q3=1 _ERROR_=1 _N_=8 

� The first line tells you where the problem occurred. Specifically, it states the name 
of the variable SAS got stuck on and the line number and columns of the raw data 
file that SAS was trying to read. In this example, the error occurred while SAS was 
trying to read a variable named IDNumber from columns 1 through 5 in line 8 of the 
input file. 

� The next line is a type of ruler with columns as the increments. The numeral 1 marks 
the tenth column, 2 marks the twentieth, and so on. Below the ruler, SAS dumps the 
actual line of raw data so you can see the little troublemaker for yourself. Using the 
ruler as a guide, you can count over to the column in question. At this point you can 
compare the actual raw data to your INPUT statement, and the error is usually 
obvious. The value of IDNumber should be zero-zero-seven, but looking at the line of 
actual data you can see that a careless typist has typed zero-letter O-seven. Such an 
error may seem minor to you, but you’ll soon learn that computers are hopelessly 
persnickety. 

� As if this weren’t enough, SAS prints one more piece of information: the values of each 
variable for that observation as SAS read it. In this case, you can see that IDNumber 
equals missing, Name equals James Bond, and so on. Two automatic variables appear 
at the end of the line: _ERROR_ and _N_. The _ERROR_ variable has a value of 1 if 
there is a data error for that observation, and 0 if there is not. In an invalid-data note, 
_ERROR_ always equals 1. The automatic variable _N_ is the number of times SAS has 
looped through the DATA step.  



Chapter 10: Debugging Your SAS Programs 263

Unprintable characters  Occasionally invalid data contain unprintable characters. In these 
cases, SAS shows you the raw data in hexadecimal format.  

NOTE: Invalid data for IDNumber in line 10 1-5. 

    RULE: ----+----1----+----2----+----3----+----4----+----5----+----6----+ 

� CHAR  ..   Indiana Jones PI83. 

� ZONE  20222466666624666725433222222222222222222222222222222222222222222 

� NUMR  E90009E491E10AFE5300983E00000000000000000000000000000000000000000 

IdNumber=. Name=Indiana Jones Class=PI Q1=8 Q2=3 Q3=. _ERROR_=1 _N_=10 

��As before, SAS prints the line of raw data that contains the invalid data. 

� Directly below the line of raw data, SAS prints two lines containing the hexadecimal 
equivalent of the data. You needn’t understand hexadecimal values to be able to read this. 
SAS prints the data this way because the normal 10 numerals and 26 letters don’t provide 
enough values to represent all computer symbols uniquely. Hexadecimal uses two 
characters to represent each symbol. To read hexadecimal, take a digit from the first line 
(labeled ZONE) together with the corresponding digit from the second line (labeled 
NUMR). In this case, a tab slipped into column 2 and appears as a harmless-looking 
period in the line of data. In hexadecimal, however, the tab appears as 09, while a real 
period in column 1 is 2E in hex.

 1

Possible causes Common reasons for receiving the invalid-data note include 

�� using the letter O instead of the number zero 

�� forgetting to specify that a variable is character (SAS assumes it is numeric) 

�� incorrect column specifications producing embedded spaces in numeric data 

�� list-style data with two periods in a row and no space in between 

�� missing data not marked with a period for list-style input causing SAS to read the next 
data value 

�� using special characters such as tab, carriage-return-line-feed, or form-feed in numeric 
data 

�� using the wrong informat such as MMDDYY. instead of DDMMYY. 

�� invalid dates (such as September 31) read with a date informat. 

1
In OS/390 or z/OS the hexadecimal representation of a tab is 05. 



264 The Little SAS Book

10.7 Note: Missing Values Were Generated              

The missing-values note appears when SAS is unable to compute the value 
of a variable because of preexisting missing values in your data. This is not 
necessarily a problem. It is possible that your data contain legitimate missing 
values and that setting a new variable to missing is a desirable response. But it 
is also possible that the missing values result from an error and that you need to 
fix your program or your data. A good rule is to think of the missing-values note 
as a flag telling you to check for an error. 

Example Here again are the data from the toad-jumping contest including the 
toad’s name and the distance jumped in each of three trials: 

Lucky  1.9  .  3.0 
Spot   2.5 3.1 0.5 
Tubs    .   .  3.8 
Hop    3.2 1.9 2.6 
Noisy  1.3 1.8 1.5 
Winner  .   .   . 

Notice that several of the toads have missing values for one or more jumps. To compute the 
average distance jumped, the program in the following SAS log reads the raw data, adds 
together the values for the three jumps, and divides by three: 

1    DATA toads; 
2       INFILE ’c:\MyRawData\Jump.dat’; 
3       INPUT ToadName $ Jump1 Jump2 Jump3; 
4       AverageJump = (Jump1 + Jump2 + Jump3) / 3; 
5    RUN; 

NOTE: The infile ’c:\MyRawData\Jump.dat’ is: 
      FILE NAME=c:\MyRawData\Jump.dat, 
      RECFM=V,LRECL=132 

NOTE: 6 records were read from the infile ’c:\MyRawData\Jump.dat’. 
      The minimum record length was 17. 
      The maximum record length was 18. 

NOTE: �Missing values were generated as a result of performing an
        operation on missing values. 

�Each place is given by: (Number of times) at (Line):(Column) 
        3 at 4:25 

NOTE: The data set WORK.TOADS has 6 observations and 5 variables. 

Because of missing values in the data, SAS was unable to compute AverageJump for some of the 
toads. In response, SAS printed the missing-values note which has two parts: 

� The first part of the note says that SAS was forced to set some values to missing. 

��The second part is a bit more cryptic. SAS lists the number of times values were set to 
missing. This generally corresponds to the number of observations that generated missing 
values, unless the problem occurs within a DO-loop. Next SAS states where in the program 
it encountered the problem. In the preceding example, SAS set three values to missing: at 
line 4, column 25. Looking at the program, you can see that line 4 is the line which calculates 
AverageJump, and column 25 contains the first plus sign. Looking at the raw data, you can 
see that three observations have missing values for Jump1, Jump2, or Jump3. Those 
observations are the three times mentioned in the missing-values note. 



Chapter 10: Debugging Your SAS Programs 265

Finding the missing values In this case it was easy to find the observations with missing 
values. But if you had a data set with hundreds, or millions, of observations, then you couldn’t just 
glance at the data. In that case, you could subset the problematic observations with a subsetting IF 
statement, and print them with a program like this: 

DATA missing; 
   INFILE 'Jump.dat'; 
   INPUT ToadName $ Jump1 Jump2 Jump3; 
   AverageJump = (Jump1 + Jump2 + Jump3) / 3; 
   IF AverageJump = .; 

PROC PRINT DATA = missing; 
   TITLE 'Observations with Missing Values Generated'; 
RUN;

Your output would look like this: 

                Observations with Missing Values Generated        1 
                    Toad                                  Average 
            Obs     Name        Jump1    Jump2    Jump3     Jump 
             1      Lucky       1.9       .       3.0        . 
             2      Tubs         .        .       3.8        . 
             3      Winner       .        .        .         . 

Using the SUM and MEAN functions  You may be able to circumvent this problem when 

you are computing a sum or mean by using the SUM or MEAN function instead of an arithmetic 
expression. In the preceding program, you could remove this line: 

AverageJump = (Jump1 + Jump2 + Jump3) / 3; 

And substitute this line: 

AverageJump = MEAN(Jump1, Jump2, Jump3);

The SUM and MEAN functions use only non-missing values for the computation. In this example, 
you would still get the missing-values note for one toad, Winner, because it had missing values for 
all three jumps. 



266 The Little SAS Book

10.8 Note: Numeric Values Have Been Converted to 
Character (or Vice Versa) 

Even with only two data types, numeric and character, SAS programmers sometimes get their 
variables mixed up. When you accidentally mix numeric and character variables, SAS tries to 
fix your program by converting variables from numeric to character or vice versa, as needed. 
Programmers sometimes ignore this problem, but that is not a good idea. If you ignore this 
message, it may come back to haunt you as you find new incompatibilities resulting from the fix. 
If, indeed, a variable needs to be converted, you should do it yourself, explicitly, so you know what 
your variables are doing.  

Example To show how SAS handles this kind of incompatibility, here are data about a class. 
Each line of data contains a student’s ID number, name, and scores on two tests.  

110 Linda   53 60 
203 Derek   72 64 
105 Kathy   98 82 
224 Michael 80 55 

The instructor runs the following program to read the data and create a permanent SAS data set 
named SCORES. 

LIBNAME students 'c:\MySASLib'; 
DATA students.scores; 
   INFILE 'c:\MyRawData\Scores.dat'; 
   INPUT StudentID Name $ Score1 Score2 $; 
RUN;

After creating the permanent SAS data set, the instructor runs a program to compute the total score 
and substring the first digit of StudentID. (Students in section 1 of the class have IDs starting with 1 
while students in section 2 have IDs starting with 2.) Here is the log from the program: 

2    DATA grades; 
3       SET students.scores; 
4       TotalScore = Score1 + Score2; 
5       Class = SUBSTR(StudentID,2,1); 
6    Run; 

NOTE: Character values have been converted to numeric values at the places 
      given by:(Line):(Column). 
      4:26 
NOTE: Numeric values have been converted to character values at the places 
      given by:(Line):(Column). 
      5:19 
NOTE: There were 4 observations read from the data set STUDENTS.SCORES. 
NOTE: The data set WORK.GRADES has 4 observations and 6 variables. 
NOTE: DATA statement used (Total process time): 
      real time           0.04 seconds 
      cpu time            0.04 seconds 

This program produces two values-have-been-converted notes. The first conversion occurred in 
line 4, column 26. Looking at the log you can see that the variable Score2 appears in column 26 of 
line 4. Score2 was accidentally input as a character variable, so SAS had to convert it to numeric 
before adding it to Score1 to compute TotalScore. 



Chapter 10: Debugging Your SAS Programs 267

The second conversion occurred in line 5, column 19. Looking at the log you can see that the 
variable StudentID appears in column 19 of line 5. StudentID was input as a numeric variable, but 
the SUBSTR function requires character variables, so SAS was forced to convert StudentID to 
character. 

Converting variables You could go back and input the raw data with the correct types, but 
sometimes that’s just not practical. Instead you can convert the variables from one type to another. 
To convert variables from character to numeric, you use the INPUT function. To convert from 
numeric to character, you use the PUT function. Most often, you would use these functions in an 
assignment statement with the following syntax: 

 Character to Numeric Numeric to Character 

newvar = INPUT(oldvar, informat); newvar = PUT(oldvar, format);

These two slightly eccentric functions are first cousins of the PUT and INPUT statements. Just 
as an INPUT statement uses informats, the INPUT function uses informats; and just as PUT 
statements use formats, the PUT function uses formats. These functions can be confusing because 
they are similar but different. In the case of the INPUT function, the informat must be the type you 
are converting to—numeric. In contrast, the format for the PUT function must be the type you are 
converting from—numeric.

1
 To convert the troublesome variables in the preceding program, you 

would use these statements: 

 Character to Numeric Numeric to Character 

 NewScore2 = INPUT(Score2, 2.); NewID = PUT(StudentID, 3.); 

Here is a log showing the program with the statements to convert Score2 and StudentID: 

7    DATA grades; 
8       SET students.scores; 
9       NewScore2 = INPUT(Score2, 2.); 
10      TotalScore = Score1 + NewScore2; 
11      NewID = PUT(StudentID,3.); 
12      Class = SUBSTR(NewID,2,1); 
13   Run; 

NOTE: There were 4 observations read from the data set STUDENTS.SCORES. 
NOTE: The data set WORK.GRADES has 4 observations and 8 variables. 
NOTE: DATA statement used (Total process time): 
      real time           0.03 seconds 
      cpu time            0.03 seconds 

Notice that this version of the program runs without any suspicious messages. 

1
In this discussion, we are talking about converting variables from numeric to character or vice versa, but you can also use the

  PUT function to change one character value to another character value. When you do this, oldvar and newvar would be 
  character variables, and the format would be a character format. 



268 The Little SAS Book

10.9 DATA Step Produces Wrong Results but No Error 
Message

Some of the hardest errors to debug aren’t errors at all, at least not to 
SAS. If you do complex programming, you may write a DATA step that 
runs just fine—with no errors or suspicious notes—but produces the 
wrong results. The more complex your programs are, the more likely 

you are to get this kind of error. Sometimes it seems like a DATA step is a black box. You know 
what goes in, and you know what comes out, but what happens in the middle is a mystery. This 
problem is actually a logic error; somewhere along the way SAS got the wrong instruction. 

Example Here is a program that illustrates this problem and how to debug it. The raw data 
file below contains information from a class. For each student there are three scores from tests, 
and one score from homework: 

Linda   53 60  66 42 
Derek   72 64  56 32 
Kathy   98 82 100 48 
Michael 80 55  95 50 

This program is supposed to select students whose average score is below 70, but it doesn’t 
work. Here is the log from the wayward program: 

1    * Keep only students with mean below 70; 
2    DATA lowscore; 
3       INFILE ’c:\MyRawData\Class.dat’; 
4       INPUT Name $ Score1 Score2 Score3 Homework; 
5       Homework = Homework * 2; 
6       AverageScore = MEAN(Score1 + Score2 + Score3 + Homework); 
7       IF AverageScore < 70; 
8    RUN; 

NOTE: The infile ’c:\MyRawData\Class.dat’ is: 
      File Name=c:\MyRawData\Class.dat, 
      RECFM=V,LRECL=256 

NOTE: 4 records were read from the infile ’c:\MyRawData\Class.dat’. 
      The minimum record length was 20. 
      The maximum record length was 20. 
NOTE: The data set WORK.LOWSCORE has 0 observations and 6 variables. 

First, the DATA step reads the raw data from a file called Class.dat. The highest possible score 
on homework is 50. To make the homework count the same as a test, the program doubles the 
value of Homework. Then the program computes the mean of the three test scores and 
Homework, and subsets the data by selecting only observations with a mean score below 70. 
Unfortunately, something went wrong. The LOWSCORE data set contains no observations. A 
glance at the raw data confirms that there should be students whose mean scores are below 70. 

Using the PUT statement to debug To debug a problem like this, you have to figure out 
exactly what is happening inside the DATA step. A good way to do this is with PUT statements. 
Elsewhere in this book, PUT statements are used along with FILE statements to write raw data 
files and custom reports. If you use a PUT statement without a FILE statement, then SAS writes 
the data in the SAS log. That is just fine for debugging. PUT statements can take many forms, but 
for debugging, a handy style of PUT statement is 

PUT _ALL_; 



Chapter 10: Debugging Your SAS Programs 269

SAS will print all the variables in your data set: first the variable name, then the actual data value, 
with an equal sign in between. If you have a lot of variables, you can print just the relevant ones 
this way: 

PUT variable-1=   variable-2=   . . .   variable-n=;

Without the equal signs, SAS would print just the data values. Adding the equal signs tells SAS to 
label the data so that you know which data values are which. 

The DATA step below is identical to the one shown earlier except that a PUT statement was added. 
In a longer DATA step, you might choose to have more than one PUT statement. In this case, one 
will suffice. This PUT statement is placed before the subsetting IF, since in this particular program 
the subsetting IF eliminates all observations: 

9    * Keep only students with mean below 70; 
10   DATA lowscore; 
11      INFILE ’c:\MyRawData\Class.dat’; 
12      INPUT Name $ Score1 Score2 Score3 Homework; 
13      Homework = Homework * 2; 
14      AverageScore = MEAN(Score1 + Score2 + Score3 + Homework); 
15      PUT Name= Score1= Score2= Score3= Homework= AverageScore=; 
16      IF AverageScore < 70; 
17   RUN; 

NOTE: The infile ’c:\MyRawData\Class.dat’ is: 
      FILE NAME=c:\MyRawData\Class.dat, 
      RECFM=V,LRECL=256 

Name=Linda Score1=53 Score2=60 Score3=66 Homework=84 AverageScore=263 
Name=Derek Score1=72 Score2=64 Score3=56 Homework=64 AverageScore=256 
Name=Kathy Score1=98 Score2=82 Score3=100 Homework=96 AverageScore=376 
Name=Michael Score1=80 Score2=55 Score3=95 Homework=100 AverageScore=330 

NOTE: 4 records were read from the infile ’c:\MyRawData\Class.dat’. 
      The minimum record length was 20. 
      The maximum record length was 20. 
NOTE: The data set WORK.LOWSCORE has 0 observations and 6 
      variables. 

Looking at the the log, you can see the result of the PUT statement. The data listed in the middle 
of the log show that the variables are being input properly, and the variable Homework is being 
adjusted properly. However, something is wrong with the values of AverageScore; they are much 
too high. There is a syntax error in the line that computes AverageScore. Instead of commas 
separating the three score variables in the MEAN function, there are plus signs. Since functions 
can contain arithmetic expressions, SAS simply added the four variables together, as instructed, 
and computed the mean of a single number. That’s why no observations had values of 
AverageScore below 70. 



270 The Little SAS Book

10.10 The DATA Step Debugger 

If you use interactive SAS, then you have another choice when it comes to 
debugging logic errors. Instead of the PUT statements discussed in the previous section, you can 
use the DATA step debugger.  

To understand the DATA step debugger, you have to know that SAS runs every program in two 
phases. To the person running the program, it looks like one action, but in reality SAS first 
compiles your program, then SAS executes your program. Errors can occur during either phase, 
but they are different types of errors. Syntax errors and some data errors (such as numeric-to-
character-conversion) occur at compile time. Other errors such as logic errors and some data 
errors (such as missing-values-were-generated) compile just fine, but cause you to get bad results 
at execution.  

The DATA step debugger does its work at execution time. That means you can’t use the DATA 
step debugger to find compile-time errors such as missing semicolons. (You don’t really need it 
for these errors since they always generate messages in your log.) However, if you have an 
execution-time error, then the DATA step debugger may be a big help. 

Example  To show how the DATA step debugger compares to the traditional method using 
PUT statements to debug logic errors, this example uses the same program as section 10.9. The 
raw data file below contains five variables—student’s name, scores from three tests, and score 
from homework: 

Linda   53 60  66 42 
Derek   72 64  56 32 
Kathy   98 82 100 48 
Michael 80 55  95 50 

Starting the debugger The following program is supposed to select students whose 
average score is below 70, but it doesn’t work. To invoke the debugger, simply add the DEBUG 
option to the end of your DATA statement, and submit the DATA step from the SAS windowing 
environment.   

* Keep only students with mean below 70; 
DATA lowscore / DEBUG; 
   INFILE 'c:\MyRawData\Class.dat'; 
   INPUT Name $ Score1 Score2 Score3 Homework; 
   Homework = Homework * 2; 
   AverageScore = MEAN(Score1 + Score2 + Score3 + Homework); 
   IF AverageScore < 70; 
RUN;

The debugger windows After you submit the DATA step, two windows will appear: the 
DEBUGGER LOG window and the DEBUGGER SOURCE window. The DEBUGGER LOG 
window contains messages from the debugger and a command line. The DEBUGGER SOURCE 
window contains your DATA step statements with the current line highlighted.  

One nice bonus of the DATA step debugger is the ability to watch SAS executing a DATA step 
line-by-line and observation-by-observation. Since the highlighting in the DEBUGGER SOURCE 
window marks each line as SAS executes it, the debugger provides a graphic illustration of the 
structure of a DATA step. For a beginner, this alone could be very enlightening. You may even 



Chapter 10: Debugging Your SAS Programs 271

want to take a DATA step that works just fine, and run it through the DATA step debugger just 
to see this. 

Executing debugger commands  You 

can control the debugger in two ways—using 
pull-down menus or typing commands at a 
command line. Once you invoke the DATA 
step debugger, you will see some new menu 
options. The View, Run, and Breakpoint 
menus contain debugger commands. If 
you prefer to type commands, you can 
type them after the arrow at the bottom 
of the DEBUGGER LOG window. In the 
DEBUGGER LOG window to the right, 
the STEP command has been typed at the 
command line. The following table shows 
the most common commands: 

Menu Path Command Line Description 

Run-Step <return> executes one statement 

STEP n executes n statements, where n is a 
number 

View-Examine values EXAMINE variable-list prints the values of variables 

View-Set values SET variable = expression assigns a value to a specified 
variable for the current 
observation 

Run-Quit QUIT ends the debugger and finishes 
executing the DATA step 

In this DEBUGGER LOG window you can 
see the programmer has pressed the return 
key until SAS stepped to line 6 of the program. 
Then the programmer typed EXAMINE 
_ALL_, and SAS listed all the variables and 
their values. Looking at the data values, 
you can see the value of AverageScore is 
much too high. There is a logic error in the line 
that computes AverageScore. The plus signs 
should be commas. Once you find the error, 
quit the debugger, and correct the error, 
remembering to remove the DEBUG option. 



272 The Little SAS Book

10.11 Error: Invalid Option, Error: The Option Is Not  
Recognized, or Error: Statement Is Not Valid 

If SAS cannot make sense out of one of your statements, it stops executing the current DATA or 
PROC step and prints one of these messages: 

ERROR 22-7: Invalid option name. 

ERROR 202-322: The option or parameter is not recognized. 

ERROR 180-322: Statement is not valid or it is used out of proper order. 

The invalid-option message and its cousin, the option-is-not-recognized message, tell you that you 
have a valid statement, but SAS can’t make sense out of an apparent option. The statement-is-not-
valid message, on the other hand, means that SAS can’t understand the statement at all. Thank-
fully, with all three messages SAS underlines the point at which it got confused so you know 
where to look for the problem. 

Example  The SAS log below contains an invalid option: 

1    DATA class (ROP = Score1); 
                 --- 
                 22 
ERROR 22-7: Invalid option name ROP. 

2       INFILE 'c:\MyRawData\Scores.dat'; 
3       INPUT  Name $ Score1 Score2 Score3 Homework; 
4    RUN; 

NOTE: The SAS System stopped processing this step because of errors. 
NOTE: DATA statement used (Total process time): 
      real time           0.03 seconds 
      cpu time            0.00 seconds 

In this DATA step, the word DROP was misspelled as ROP. Since SAS cannot interpret this, it 
underlines the word ROP, prints the invalid-option message, and stops processing the DATA step. 

Example  The following log contains an option-is-not-recognized message: 

5    PROC PRINT 
6       VAR Score2; 
        --- ------ 
        22  202 
ERROR 22-322:  Syntax error, expecting one of the following: ;, DATA, DOUBLE,
     HEADING, LABEL, N, NOOBS, OBS, ROUND, ROWS, SPLIT, STYLE, UNIFORM, WIDTH. 
ERROR 202-322: The option or parameter is not recognized. 
7    RUN; 

NOTE: The SAS System stopped processing this step because of errors. 
NOTE: PROCEDURE PRINT used (Total process time): 
      real time           0.25 seconds 
      cpu time            0.09 seconds 

SAS underlined the VAR statement. This message may seem puzzling since VAR is not an option, 
but a statement, and a valid statement at that. But if you look at the previous statement, you will 
see that the PROC statement is missing one of those pesky semicolons. As a result, SAS tried to 
interpret the words VAR and Score2 as options in the PROC statement. Since no options exist with 
those names, SAS stopped processing the step and printed the option-is-not-recognized message. 
SAS also printed the syntax-error message listing all the valid options for a PROC statement. 



Chapter 10: Debugging Your SAS Programs 273

Example Here is a log with the statement-is-not-valid message: 

8    PROC PRINT; 
9       SET class; 
        --- 
        180 
ERROR 180-322: Statement is not valid or it is used out of proper order. 
10   RUN; 

NOTE: The SAS System stopped processing this step because of errors. 
NOTE: PROCEDURE PRINT used (Total process time): 
      real time           0.01 seconds 
      cpu time            0.01 seconds 

In this case, a SET statement was used in a PROC step. Since SET statements can be used only in 
DATA steps, SAS underlines the word SET and prints the statement-is-not-valid message. 

Possible causes Generally, with these error messages, the cause of the problem is easy to 
detect. You should check the underlined item and the previous statement for possible errors. 
Possible causes include 

�� a misspelled keyword 

�� a missing semicolon 

�� a DATA step statement in a PROC step (or vice versa) 

�� a RUN statement in the middle of a DATA or PROC step (this does not cause errors for 
some procedures) 

�� the correct option with the wrong statement 

�� an unmatched quotation mark 

�� an unmatched comment. 



274 The Little SAS Book

10.12  Note: Variable Is Uninitialized or Error:
           Variable Not Found 

If you find one of these messages in your SAS log, then SAS is telling you that the variable named 
in the message does not exist: 

NOTE: Variable X is uninitialized. 

WARNING: Variable X not found. 

ERROR: Variable X not found. 

Generally, the first time you get one of these messages, it is quite a shock. You may be sure that the 
variable does exist. After all, you remember creating it. Fortunately, the problem is usually easy to 
fix once you understand what SAS is telling you. 

If the problem happens in a DATA step, then SAS prints the variable-is-uninitialized note, 
initializes the variable, and continues to execute your program. Normally variables are initialized 
when they are read (via an INPUT, SET, MERGE, or UPDATE statement) or when they are created 
via an assignment statement. If you use a variable for the first time in a way that does not assign a 
value to the variable (such as on the right side of an assignment statement, in the condition of an 
IF statement, or in a DROP or KEEP option) then SAS tries to fix the problem by assigning a value 
of missing to the variable for all observations. This is very generous of SAS, but it almost never 
fixes the problem, since you probably don’t want the variable to have missing values for all 
observations. 

When the problem happens in a PROC step, the results are more grave. If the error occurs in a 
critical statement such as a VAR statement, then SAS prints the variable-not-found error and 
does not execute the step. If the error occurs in a less critical statement such as a LABEL statement, 
then SAS prints the variable-not-found warning message, and attempts to run the step. 

Example Here is the log from a program with missing-variable problems in both a DATA and a 
PROC step: 

1    DATA highscore (KEEP = Name Total); 
2       INPUT Name $ Score1 Score2; 
3       IF Scor1 > 5; 
4       Total = Score1 + Score2; 
5       DATALINES; 

NOTE: Variable Scor1 is uninitialized. 
NOTE: The data set WORK.HIGHSCORE has 0 observations and 2 variables. 
NOTE: DATA statement used (Total process time): 
      real time           0.04 seconds 
      cpu time            0.03 seconds 
8       ; 
9
10   PROC PRINT DATA = highscore; 
11      VAR Name Score2 Total; 
ERROR: Variable SCORE2 not found. 
12   RUN; 

NOTE: The SAS System stopped processing this step because of errors. 
NOTE: PROCEDURE PRINT used (Total process time): 
      real time           0.03 seconds 
      cpu time            0.01 seconds 



Chapter 10: Debugging Your SAS Programs 275

In this DATA step, the INPUT statement reads three variables: Name, Score1, and Score2. But a 
misspelling in the subsetting IF statement causes SAS to initialize a new variable named Scor1. 
Because Scor1 has missing values, none of the observations satisfies the subsetting IF, and the data 
set HIGHSCORE is left with zero observations. 

In the PROC PRINT, the VAR statement requests three variables: Name, Score2, and Total. Score2 
did exist but was dropped from the data set by the KEEP= option in the DATA statement. That 
KEEP= option kept only two variables, Name and Total. As a result, SAS prints the variable-not-
found error message, and does not execute the PROC PRINT. 

Possible causes Common ways to “lose” variables include 

�� misspelling a variable name 

�� using a variable that was dropped at some earlier time 

�� using the wrong data set 

�� committing a logic error, such as using a variable before it is created.

If the source of the problem is not immediately obvious, PROC CONTENTS can often help you 
figure out what is going on. PROC CONTENTS, which is discussed in section 2.21, gives you 
information about what is in a SAS data set including variable names. 



276 The Little SAS Book

10.13 SAS Truncates a Character Variable  

Sometimes you may notice that some, or all, of the values of a character 
variable are truncated. You may be expecting “peanut butter” and get 
“peanut b” or “chocolate ice cream” and get “chocolate ice.” This usually 
happens when you use IF statements to create a new character variable, or 
when you are using list-style input and you have values longer than eight 
characters. 

All character variables have a fixed length determined by one of the 
following methods. 

INPUT statement If a variable’s values are read from a raw data file, then the length is 
determined by the INPUT statement. If you are using list-style input, then the length defaults to 
8. If you are using column or formatted input, then the length is determined by the number of 
columns, or informat. The following shows examples of INPUT statements that read values for 
the variable Food and the resulting lengths of Food: 

        INPUT statement Length of Food 

INPUT Food $;              8 
INPUT Food $ 1-10;         10 
INPUT Food $15.;           15 

Assignment statement If you are creating the variable in an assignment statement, then the 
length is determined by the first occurrence of the new variable name. For example, the following 
program creates a variable, Status, whose values are determined by the Temperature variable: 

DATA summer; 
   SET temps; 
   IF Temperature > 100 THEN Status = 'Hot'; 
      ELSE Status = 'Cold'; 
RUN;

Because the word Hot has three characters and that is the first statement which uses the variable, 
Status has a length of 3. Any other values for that variable would be truncated to three characters 
(Col instead of Cold, for example). 

LENGTH statement The LENGTH statement in a DATA step defines variable lengths and, 
if it comes before the INPUT or assignment statement, will override either of the previous two 
methods of determining length. The following LENGTH statement sets the length of the Status 
variable to 4 and the Food variable to 15: 

LENGTH Status $4 Food $15; 

ATTRIB statement You can also assign variable lengths in an ATTRIB statement in a 
DATA step where you can associate formats, informats, labels, and lengths to variables in a 
single statement. Always place the LENGTH option before a FORMAT option in an ATTRIB 
statement to ensure that the variables are assigned proper lengths. For example, the following 
statement assigns the character variable Status a length of 4 and the label Hot or Cold: 

ATTRIB Status LENGTH = $4 LABEL = 'Hot or Cold'; 



Chapter 10: Debugging Your SAS Programs 277

Example The following example shows what can happen if you let SAS determine the length of 
a character variable (in this case, using the assignment statement method). You have the following 
data for a consumer survey of car color preferences. Age is followed by sex (coded as 1 for male 
and 2 for female), annual income, and preferred car color (yellow, gray, blue, or white): 

19 1 14000 Y 
45 1 65000 G 
72 2 35000 B 
31 1 44000 Y 
58 2 83000 W 

You want to create a new variable, AgeGroup, which has these values: Teen for customers under 
20, Adult for ages 20 through 64, and Senior for those 65 and over. In the following program, a 
series of IF-THEN/ELSE statements create AgeGroup: 

DATA carsurvey; 
   INFILE 'c:\MyRawData\Cars.dat'; 
   INPUT Age Sex Income Color $; 
   IF Age < 20 THEN AgeGroup = 'Teen'; 
      ELSE IF Age < 65 THEN AgeGroup = 'Adult '; 
      ELSE AgeGroup = 'Senior'; 
PROC PRINT DATA = carsurvey; 
   TITLE 'Car Color Survey Results'; 
RUN;

The following results of the PROC PRINT show how the values of AgeGroup are truncated to four 
characters—the number of characters in Teen. 

                         Car Color Survey Results                     1 

                                                        Age 
               Obs    Age    Sex    Income    Color    Group 

                1      19     1      14000      Y      Teen 
                2      45     1      65000      G      Adul 
                3      72     2      35000      B      Seni 
                4      31     1      44000      Y      Adul 
                5      58     2      83000      W      Adul 

The addition of a LENGTH statement in the DATA step, as follows, would eliminate the truncation 
problem: 

DATA carsurvey; 
   INFILE 'c:\MyRawData\Cars.dat'; 
   INPUT Age Sex Income Color $; 
   LENGTH AgeGroup $6; 
   IF Age < 20 THEN AgeGroup = 'Teen'; 
      ELSE IF Age < 65 THEN AgeGroup = 'Adult'; 
      ELSE AgeGroup = 'Senior'; 
RUN;



278 The Little SAS Book

10.14 SAS Stops in the Middle of a Job 

One of the most disconcerting errors encountered by SAS users is having SAS stop in 
the middle of a job. It’s as if your program has suddenly dropped dead without so 
much as an error message to act as a smoking gun. Without an error message, you are 
left to sleuth this problem on your own. Often the problem has nothing to do with 
SAS. Instead the operating environment may have stopped your program in its 
tracks. Other times the problem results from programming errors that prevent SAS 
from seeing the entire job.  

A number of completely unrelated reasons can cause SAS to stop in the middle of a 
job. They are listed below, starting with the most general problems and ending with the ones that 
are specific to certain execution modes or operating environments. 

An unmatched quotation mark Unmatched quotation marks wreak havoc on SAS 
programs, including making SAS stop in the middle of a job. In this case, SAS stops because, in 
effect, it thinks the remainder of the job is part of a quote. In batch or non-interactive mode, the 
solution is simple enough. Insert the missing quotation mark and resubmit the program. In the SAS 
windowing environment you can’t just resubmit the program because SAS is still waiting for the 
other quotation mark. The solution is to submit a sacrificial quotation mark like this: 

';
RUN;

Then edit your program, correct the problem (remembering to delete the extra quotation mark and 
RUN statement at the end), and rerun the program. Some prefer to exit SAS and start over. If you 
do, just remember to save your program before exiting. 

An unmatched comment Unmatched comments can cause SAS to stop in the middle of a 
program, much like unmatched quotation marks. The problem is that SAS can’t read the entire 
program because part of it is accidentally stuck in a comment. This isn’t so likely to happen if you 
use the kind of comment that starts with an asterisk and ends with a semicolon since programs 
contain many semicolons, and any semicolon will do to end a comment. But if you use the style of 
comment that starts with /* and ends with */, and you forget to include the last */, then SAS 
will assume that the remainder of your job is one long comment. The solution, in batch or non-
interactive mode is to insert the missing end-of-comment and resubmit the program. In the SAS 
windowing environment, the solution is to submit a lone end-of-comment like this: 

*/;
RUN;

Then edit your program, correct the problem (remembering to delete the extra end-of-comment 
and RUN statement at the end), and rerun the program. Some prefer to exit SAS and start over. If 
you do, just remember to save your program before exiting. 



Chapter 10: Debugging Your SAS Programs 279

No RUN statement at the end of a program This problem occurs only in interactive 
SAS. In non-interactive or in batch mode there is an implicit RUN statement at the end of every 
SAS job. The problem is that in interactive mode SAS has no way of knowing when it is time to 
execute your last step unless you tell it with a RUN statement. The solution is to submit the 
wayward statement: 

RUN;

Not sure what the problem is? If you are working in the SAS windowing environment, 
and you think you have an unmatched quotation mark, unmatched comment, or missing RUN 
statement, but you’re not sure, you may want to submit the following set of statements: 

*';
*";
*/;
RUN;

Together these statements form a sort of universal terminator for SAS programs. If the program has 
no problems, these statements do nothing since the first three would then be comments, and an 
extra RUN statement between steps does nothing. That means you can submit these without fear of 
causing any harm. 

Out of time Batch systems often have time limits, measured in CPU seconds, for computer jobs. 
These limits are set locally by your systems programmers. And these limits are helpful because 
they allow small jobs to be submitted to a special queue with a higher priority. That way your short 
job doesn’t have to wait for some mega-job to finish processing. Time limits may also be set to stop 
jobs that accidentally get into an infinite loop. If your job stops in the middle, and you are running 
in batch mode, and you can find no unmatched quotation marks or comments, then you should 
consider whether your job might have stopped because it ran into a time limit. To find out how to 
fix this problem, talk to your local SAS Support Consultant or systems programmer. 

/* in the first column Under OS/390 or z/OS there is a unique hazard. Recall that one style of 
SAS comment starts with a slash-asterisk (/*). Batch jobs under OS/390 or z/OS use Job 
Control Language (JCL). In JCL a /* starting in column one signals the end of your program file. So 
if SAS programmers start a comment with a /* in column one, they inadvertently instruct the 
computer to stop right then and there. SAS never even sees the remainder of the job. The solution, 
of course, is to move the comment out of column one or to change to a comment starting with an 
asterisk (*) and ending with a semicolon (;). 



280 The Little SAS Book

10.15 SAS Runs Out of Memory or Disk Space                  

What do you do when you finally get your program running, and you get a message 
that your computer is out of memory or disk space? Well, you could petition to buy a more 
powerful computer, which isn’t really such a bad idea, but there are a few things you can try before 
resorting to spending money. Because this issue is very system dependent, it is not possible to 
cover everything you might be able to do in this section. However, this section describes a few 
universal actions you can take to remedy the situation. If none of these things work, then seek out 
your site’s SAS Support Consultant for advice. 

It is helpful, in trying to solve the problem, to know why it happens. Usually when you run out of 
memory, it’s when you are doing some pretty intensive computations or sorting data sets with lots 
of variables. The GLM procedure (General Linear Models), for example, can use lots of memory 
when your model is complicated and there are many levels for each classification variable. You run 
out of disk space because SAS uses disk space to store all its temporary working files, including 
temporary SAS data sets, and the SAS log and output. If you are creating many large temporary 
SAS data sets during the course of a SAS session, this can quickly fill up your disk space. 

Memory and disk space One thing you can do to help decrease disk storage is decrease 
the number of bytes needed to store data. This can also help memory problems that arise when 
sorting data sets with character data. Since all numbers are expanded to the fullest precision while 
SAS is processing data, changing storage requirements for numeric data will not help memory 
problems. Both character (if you are using list input), and numeric variables have a default storage 
requirement of eight bytes. This works for most situations. But if memory or disk space is at a pre-
mium, you can usually find some variables which require fewer bytes. 

For character data, each character requires one byte of storage. The length of a character variable is 
determined by one of the following: the INPUT statement, the LENGTH or ATTRIB statement, or, 
if it is created in an assignment statement, the length of the first value. If you are using list input, 
then variables are given a length of eight. If your data are only one character long, Y or N for 
example, then you are using eight times the storage space you actually need. You can use the 
LENGTH statement before the INPUT statement to change the default length. For example, the 
following gives the character variable Answer a length of one byte: 

LENGTH Answer $1; 

If you are using column input, then the length is equal to the number of columns you are reading; 
if you are using formatted input, then the length is equal to the width of the format. You can 
change the lengths of variables in existing SAS data sets by using a LENGTH statement between a 
DATA statement and a SET, MERGE, or UPDATE statement. 

Disk space If you are running out of disk space, in addition to shortening the lengths of 
character variables, you may also be able to decrease the lengths of numeric variables. Numeric 
data are a little trickier than character when it comes to length. All numbers can be safely stored in 
eight bytes, and that’s why eight is the default. Some numbers can be safely stored in fewer bytes, 
but which numbers depends on your operating environment. Look in the SAS Help and 
Documentation for your operating environment to determine the length and precision of numeric 
variables. For example, under Windows and UNIX, you can safely store integers up to 8,192 in 
three bytes. In general, if your numbers contain decimal values, then you must use eight bytes. If 
you have small integer values, then you can use four bytes (in some operating environments two or 
three bytes). Use the LENGTH statement to change the lengths of numeric data: 



Chapter 10: Debugging Your SAS Programs 281

LENGTH Tigers 4; 

This statement changes the length of the numeric variable Tigers to four bytes. If your numbers are 
categorical, like 1 for male and 2 for female, then you can read them as character data with a length 
of 1 and save even more space. 

Another thing you can try if you are running out of disk space is to decrease the number and size of SAS 
data sets created during a SAS session. If you are going to use only a fraction of your data for analysis, 
then subset your data as soon as possible using the subsetting IF statement. For example, if you needed 
observations only for females, then use the following statement in your DATA step: 

IF Sex = ’female’; 

If you need to look at only a few of the variables in your data set, then use the KEEP= (or DROP=) 
data set option to decrease the number of variables. For example, if you had a data set containing 
information about all the zoo animals, but you wanted to look at only the lions and tigers, then you 
could use the following statements to create a data set with only the Lions and Tigers variables: 

DATA partial; 
   SET zooanimals (KEEP = Lions Tigers); 

The SAS log and output also take up disk space. If you are using the SAS windowing environment, 
then clear the SAS log and output often. 

It is also possible to compress SAS data sets. Compressing may save space if your data have many 
repeated values. But beware, compressing can in some cases actually increase the size of your data 
set. Fortunately SAS gives a message in your log window telling you the change in size of your 
data sets. You can turn on compression by using either the COMPRESS=YES system option, or the 
COMPRESS=YES data set option. Use the system option if you want all the SAS data sets you 
create to be compressed. Use the data set option when you want to control which SAS data sets to 
compress. For example: 

DATA compressedzooanimals (COMPRESS = YES); 
  SET zooanimals; 

If you have more than one disk on your system, then you might be able to have SAS store its 
working files in a different location where there is more space. See the SAS Help and 
Documentation for your operating environment, or check with your site’s SAS Support Consultant 
for more information on how to do this. 

Memory If memory is your problem, then do what you can to eliminate other programs that are 
using your computer’s memory. If you are using a windowing environment to run your SAS 
programs, try running in batch or non-interactive mode instead. The windows take quite a lot of 
memory, and it can be a significant fraction of the total available memory. Also, see the SAS Help 
and Documentation for your operating environment for potential ways to make more memory 
available on your system. 

If you have tried all of the above, and you are still running out of memory or disk space, then you 
can always try finding a more powerful computer. One of the nice things about SAS is that the 
language is the same for all operating environments. To move your program to another operating 
environment, you would only need to change a few statements like INFILE, which deal directly 
with the operating environment.  



From The Oxford Dictionary of Quotations 5th edition, edited by Elizabeth Knowles,
copyright 1999 by Oxford University Press.

‘‘ ’’
Where observation is concerned,

chance favors a prepared mind.

LOUIS PASTEUR



APPENDICES 8

A Where to Go from Here    284

B Getting Help from SAS Technical Support    286

C An Overview of SAS Products    288

D Coming to SAS from SPSS    291

E Coming to SAS from a Programming Language    298

F Coming to SAS from SQL    302



284 The Little SAS Book

Appendix A  Where to Go from Here 

The goal of this book is to get you started using SAS and to teach you basic principles of SAS 
programming. For some of you, this book may be all you need. Others, however, may need to go 
beyond this book. This section lists sources for other training and information about SAS 
software. Contact SAS for more information on any of the following items. You may also have 
additional sources of information, developed locally, at your site. Check with your site’s SAS 
Support Consultant for more information. 

The SAS Web Site 
Like most companies these days, SAS has a very useful Web site. You can find all sorts of 
information there: news and events, answers to frequently asked questions (FAQ), technical 
information, product descriptions, publications information, training information, 
documentation—the list is almost endless. If you have a question, and can’t find the answer in this 
book, then try the SAS Customer Support Center Web site: 

support.sas.com 

SAS Help and Documentation 
Beginning with SAS 9, SAS Help and Documentation is available from within your SAS session, 
and can be accessed through the Help pull-down menu or by typing the word HELP in the 
command line area on your display.  SAS Help and Documentation is your complete reference 
material for SAS and gives you access to tutorials, sample programs, general information, and 
specific syntax.  SAS Help and Documentation includes material for all products and operating 
environments.  Prior to SAS 9, the documentation accessible through Help is less comprehensive 
but is complemented by the SAS OnlineDoc. 

SAS OnlineDoc 
SAS OnlineDoc is a stand-alone version of the SAS documentation.  You do not need to be running 
SAS to view the documentation in this format.  SAS OnlineDoc is available in HTML format that 
can be installed on a local Web server, or your own workstation.  Or, you can register to access it 
though the SAS customer support Web site.  You can also purchase a PDF version of SAS 
OnlineDoc, from which you can make hard copies of the documentation. 

SAS Manuals 
SAS publishes manuals in hard copy, digital, and CD-ROM formats covering topics from getting 
started guides to reference manuals.  The best source for an up-to-date listing of SAS manuals is 
the SAS Publishing Web site. 

Books by Users 
There are many titles in the Books by Users series offered by SAS. These books are written by 
users of SAS software, and thus offer a different perspective from the SAS documentation. 
Topics range from very general and introductory to very specific. Some Books by Users are listed 
at the end of this book and a complete listing can be found through the SAS Publishing Web site. 

SAS Online Tutor 
SAS Online Tutor is a SAS training product that can be licensed on an annual basis and installed on 
your system. SAS Online Tutor is highly interactive and covers a broad range of topics from a 



Appendices 285

general introduction to specialized areas. Or, you can access it through the SAS Training Web site 
for 60 or 90 day periods.  

SAS Training Courses 
SAS offers courses on SAS software covering many topics and varying in length and cost. You can 
also arrange to have on-site training for many of the courses. In addition to the instructor-based 
courses, SAS also offers video-based courses. Contact SAS for more information about either of 
these training opportunities through the SAS Training Web site.  

SAS User Groups 
SAS has a network of user groups which spans the globe. There are in-house groups, local groups, 
and regional and international groups. The regional and international groups generally meet once 
a year for several days. Presentations and demonstrations are given by users and SAS employees; 
there are workshops and training opportunities and usually vendor exhibits. SAS Users Group 
International (SUGI) is the largest user group. Local and in-house groups usually meet more 
frequently for a shorter duration. These user-group meetings can be a great source of information 
about SAS software. More information about SUGI and the regional user groups can be found at 
the SAS Customer Support Center Web site. 

SAS Com magazine and Electronic Newsletters 
The SAS Com magazine is available to all SAS users at no extra cost. It covers news items like 
capabilities of new releases of SAS software, has articles of general interest, and has some technical 
information. Also, SAS publishes several electronic newsletters including Your SAS Business Report
for business and industry decision-makers and executives and Your SAS Technology Report for SAS 
software users, systems administrators, and IT staff.  All of these publications can be accessed 
through the SAS Publishing Web site.  

SAS-L 
SAS-L is an independent electronic mailing list of SAS users all over the world. This group helps 
subscribers solve SAS problems, discusses SAS philosophy, posts announcements, and discusses 
whatever else seems related to SAS. Contact your site's SAS Support Consultant for information on 
how to subscribe to this high-volume list. 

SAS Technical Support 
If you are really stuck on a SAS problem, you can contact SAS Technical Support. The various ways 
of contacting SAS Technical Support are covered in Appendix B.



286 The Little SAS Book

Appendix B  Getting Help from SAS Technical Support 

Sooner or later you will come up with a question for which you can't find the answer. With some 
software companies, very little technical support is available, or the support is available but only 
for an extra charge—not so with SAS. SAS has a policy of “free, unlimited support to all sites 
licensing software from SAS.”

1
 In addition, SAS’s low employee turnover means better, more 

knowledgeable service for users.  

There are several ways to contact Technical Support including Web site, e-mail, telephone and 
fax. Before you contact Technical Support, you must know certain information: your site or 
customer number, the release of SAS you are using, and the name of your operating 
environment. To find out your site number and release of SAS, run a SAS program, any SAS 
program, or just start interactive SAS. Then look at the beginning of your SAS log to find your 
site number and release notes.  

Technical Support Web site  If you using the SAS windowing environment and you are 
connected to the Internet, you can access the Technical Support Web site with a few clicks of a 
mouse. With SAS running, just select SAS on the Web from the Help pull-down menu and 
then select Technical Support. You can also connect to Technical Support’s Web site via the 
SAS Customer Support page:  

support.sas.com 

From the Technical Support Web site you can browse tables of Frequently Asked Questions (FAQ), 
access sample programs, search release notes for known problems, FTP files, and find other helpful 
information. If you can’t find the answer to your question, you can contact a person in Technical 
Support through the Web site. 

E-mail  You can also submit problems to Technical Support via the Electronic Mail Interface to 
Technical Support (or EMITS), by sending a message to 

support@sas.com

However, e-mail messages sent to this address must be in a specific format. That’s why submitting 
your question via the Web site is so easy—it puts your message in the correct format for you. If you 
wish to submit a problem by e-mail, it must be in the following format: 

1
The SAS Learning Edition is not licensed. If you are using the SAS Learning Edition, you cannot use the “live” technical 

support described in this section. However, you still have the online documentation provided with the SAS Learning 
Edition, and the SAS Learning Edition Web site (www.sas.com/LE) to help you learn more about SAS.



Appendices 287

To:support@sas.com 
From:<your email address> 
Subject:<anything>

name=<your name> 
site=<your site number> 
company=<your company name> 
phone=<your phone number including the country code> 

product=<such as Base SAS ODS or SAS/IntrNet> 
release=<the release of SAS you are using> 
os=<your operating environment> 

A detailed description of your problem with optional attachments such as a 
SAS log. 

You just replace the arrows and descriptions with your information. For example,  

To:support@sas.com 
From:mwong@xyzinc.com
Subject:PROC TABULATE problem 

name=Mary Wong 
site=0098541001
company=XYZ, Inc. 
phone=+1(916) 123-4567 
product=Base SAS procedures 
release=V9
os=Win XP 

When I set a variable header equal to blank in a LABEL statement, it 
doesn’t work. 

Telephone and fax  The traditional way to contact Technical Support still works well. 
Customers in North America can use these numbers: 

Voice: (919) 677-8008 between 9 a.m. and 8 p.m. Eastern time on weekdays 

Fax: (919) 677-4444 

Customers outside North America should contact their local SAS office. To find contact 
information (phone numbers, mailing addresses, and Web sites) for SAS offices outside North 
America, use the Technical Support Web site. 



288 The Little SAS Book

Appendix C  An Overview of SAS Products 
SAS licenses many different products. This book covers elements from Base SAS software, 
SAS/STAT software, and SAS/ACCESS for PC Files software. You can see from the following 
list that there is much more to SAS than just these products. Fortunately, most of the products 
are integrated, so you don't have to convert data sets or start up another program to use the 
other products. The following is a partial list of SAS products with brief descriptions. Since the 
number of SAS products is constantly changing, check the SAS Web site (www.sas.com) for a 
current list. You must have Base SAS software installed on your system to run most of these 
products. Not all products are available for all operating environments. Contact SAS for more 
information on any of the products: 

Base SAS 
must be installed on your system to run most of the other SAS products. Base SAS software 
includes the DATA step for manipulating your data and simple statistical and utility procedures. 

SAS/ACCESS 
allows you access to data used by other software packages. You can read and, in some cases, 
write data in their native formats without having to leave SAS. Most of the popular database 
software is supported, and each has its own SAS/ACCESS product. 

SAS/AF 
allows you to write your own interactive SAS applications. Applications written with SAS/AF 
software allow users quick-and-easy access to information without knowing the SAS language. 

SAS/ASSIST 
is a menu-driven front end to SAS software. You make choices from menus, and SAS writes the 
program for you. Programs can be stored for later use. 

SAS/C 
is a C and C++ development environment for IBM mainframes. 

SAS/CONNECT 
connects computers running SAS software. Data can be shared between the computers, and 
programs developed on one computer or operating environment can be transferred to another 
for processing. 

SAS Data Quality Server 
enables you to analyze, cleanse, and standardize your data. 

SAS/EIS 
allows you to develop and use custom executive information systems. Managers can use the EIS 
interfaces to SAS to quickly get the information they need by simply pointing and clicking (with 
a mouse, of course). 

SAS Enterprise Guide  
is a graphical user interface to many parts of SAS software.   This is a Windows only product, but 
can be used to access SAS servers on other systems. 

SAS Enterprise Miner 
is a complete product in itself. It provides an easy-to-use front-end to the SEMMA (Sample, 
Explore, Modify, Model, Assess) process for business users. 



Appendices 289

SAS Enterprise Reporter  
enables you to see, analyze, and present information customized to your specific reporting needs. 

SAS/ETS 
has many procedures for analysis of time-series data, forecasting, and business planning. 

SAS/FSP 
comprises full-screen products that provide interactive methods for data entry, editing, and 
retrieval. Custom data entry screens can be developed with error checking built in. 

SAS/Genetics 
provides methods for characterization of fundamental genetic parameters, and the detection of 
associations between genetic markers and disease status. 

SAS/GIS 
is a geographic information system for analyzing data with spatial relationships. 

SAS/GRAPH 
produces high-resolution plots, charts, and maps.  

SAS/IML 
is a programming language (Interactive Matrix Language) with an extensive set of mathematical 
and matrix operators. 

SAS/INSIGHT 
is a tool for visual analysis of your data. Statistical results are displayed graphically whenever 
possible and interactive manipulation of data is possible. 

SAS Information Delivery Portal 
combines SAS software with an open Java portal platform, allowing information to be selectively 
and securely disseminated throughout the organization. 

SAS Integration Technologies 
allows you to share resources and integrate SAS into your enterprise applications. 

SAS/IntrNet 
allows you to effectively deliver your SAS applications to the Web. 

SAS/LAB 
is for guided statistical analysis. This product is good for people who need to analyze data but do 
not have a background in statistics. 

SAS/MDDB Server 
allows you to save data in multidimensional database (MDDB) formats for use with online 
analytical processing (OLAP) (otherwise known as slicing and dicing your data). 

SAS OLAP Server 
provides the components that you need to perform multidimensional analysis. 

SAS OLE DB Providers 
consists of interfaces that can read data from a variety of sources using the OLE Component Object 
Model (COM).  SAS OLE DB interfaces provide a standard by which applications can uniformly 
access stored data located in a variety of sources. 



290 The Little SAS Book

SAS Online Tutor 
is an online tool for learning SAS. There are lessons covering many different aspects of SAS. 

SAS Open OLAP Server 
enables you to access multidimensional data (for example, an MDDB) stored in SAS from an 
external source.  The SAS Open OLAP Server supports the Microsoft Corporation’s OLE DB for 
OLAP API. 

SAS/OR 
provides procedures for project management and operations research such as linear programming, 
Gantt charts, activity networks, and decision analysis. 

SAS/QC 
provides procedures for statistical quality improvement, including methods for experimental 
design, improved process, and statistical control. 

SAS Scalable Performance Data Server 
using parallel processing methods and data server capabilities, provides access to large volumes of 
data and serves large numbers of concurrent users. 

SAS/SECURE 
provides encryption services to increase the security of transmissions across a network.  
SAS/SECURE software makes use of the cryptographic services provided by RSA’s Bsafe and 
Microsoft’s CryptoAPI ciphers and is subject to export regulations. 

SAS/SHARE 
provides concurrent access to data by multiple users. 

SAS/SPECTRAVIEW 
is a tool for analysis and visualization of three-dimensional data. 

SAS/STAT 
has procedures for most types of statistical analyses including many forms of regression and 
analysis of variance. 

SAS/TOOLKIT 
enables you to write your own SAS procedures, functions, formats, informats, and engines. 

SAS Universal ODBC Driver 
has the ability to read non-native (ASCII) platform SAS data. 

SAS/Warehouse Administrator 
simplifies the creation and maintenance of data warehouses. 



Appendices 291

Appendix D  Coming to SAS from SPSS 

More often than not, the first question asked by people who know SPSS and want to learn SAS 
is, “How do the two software packages compare?” No simple answer is possible since both 
products are continually evolving, with new releases introducing new capabilities. Nonetheless, 
general comparisons can be drawn. 

SAS and SPSS are very similar. Compared to other statistical software, these two products are 
similar because they are both based on languages. Most other statistical packages are 
comparatively rigid, lacking the flexibility of a language. Compared to other computer languages 
such as C, SAS and SPSS are similar because of their powerful, built-in data handling and statistical 
capabilities.  

Some SPSS users may not even know that SPSS has a programming language since many SPSS 
users use only the SPSS point-and-click interface. If you are one of these people, then you will be 
glad to know that SAS also has a point-and-click interface. You should try SAS Enterprise Guide or 
the Analyst application (section 8.9). If you are a programmer, you’ll be glad to know that SAS 
gives you a choice of modes. You can write your program in a menu-driven interactive system, or 
you can write your program with an editor and submit it non-interactively or in batch.  

Despite their fundamental similarities, SAS and SPSS have different styles. SAS is more diverse, 
especially when you consider the entire family of SAS products. Appendix C contains a partial 
listing of SAS products at the time this book was written. Most of these products are integrated, 
so they can be used seamlessly with Base SAS software. SAS has more options. More options 
mean more power to get exactly what you want. Likewise, SAS gives you more power to choose 
the format of your output, including HTML, XML, PDF, PCL, PostScript, LaTeX, Troff, text, and 
CSV, in addition to writing data for spreadsheets and databases. People who do really complex 
programming find they can do things with SAS that would be impossible to do with SPSS. 

Terminology  Some vocabulary differences exist between SAS and SPSS. To help you 
translate from one language to the other, here is a brief dictionary of analogous terms: 

SPSS term Analogous SAS term
active file no analogous term
no analogous term temporary SAS data set (also called a table) 
case observation (also called a row) 
command statement 
file handle libref 
function function 
input format informat 
numeric data numeric data 
output format format 
procedure procedure 
save file permanent SAS data set (also called a table) 
SPSS data file permanent SAS data set (also called a table) 
string data character data 
syntax statements 
syntax file a program 
system file permanent SAS data set (also called a table) 
value label user-defined format 
variable variable (also called a column) 
variable label label 
no analogous term DATA step 
no analogous term PROC step 



292 The Little SAS Book

Active files The concept of an active file in SPSS has no equivalent in SAS. When you read data 

in an SPSS program, SPSS creates an active system file. This active file is similar to a temporary SAS 
data set because it exists only for the duration of the SPSS session, just as temporary SAS data sets 
exist only for the duration of a SAS session. However, SPSS has only one active file at a time, while 
SAS can have any number of temporary or permanent data sets. When you run an analysis in SPSS, 
the data must come from the active file. When you run an analysis in SAS, by default SAS will use 
the data set most recently created. But you can easily use any other SAS data set including the 
permanent SAS data set you created last year and haven't touched since. All SAS data sets are 
always active. 

DATA and PROC steps The SAS language has some concepts that have no parallel in SPSS, 
such as DATA and PROC steps. All SAS programs are divided into these two types of steps. 
Basically, DATA steps read and modify data while PROC (short for procedure) steps perform 
specific analyses or functions such as sorting, writing reports, or running statistical analyses. SPSS 
programs do the same types of operations but without distinct steps. 

Windows When you start SPSS 12.0 (the current release at the time this was written), you see 
the SPSS Data Editor window. From there you can type in data or open an existing data set. You 
can also select File-Open-Syntax from the menus to open the SPSS Syntax Editor so you can 
type in syntax or open an existing program. SAS has similar windows, but the order is reversed. 
You see the Editor window automatically, and can open the data editor (called Viewtable) by 
selecting Tools-Table Editor from the menus. Here are what the two data editor windows 
look like when you first open them. 

Examples  For a comparison, we provide the following two programs that perform the same 
operations in SPSS and SAS. We used SPSS 12.0 and SAS 9, both running in the Windows operating 
environment. A radio station commissioned a market research company to survey listeners. 
Respondents were asked to listen to songs and rate them on a scale of 1 to 5, with 1 being “dislike 



Appendices 293

very much” and 5 being “like very much.” Here is a sample of the raw data. The variables are first 
name, age, sex, and the ratings for five songs: 

Gail    14 1 5 3 1 3 5 
Jim     56 2 3 2 2 3 2 
Susan   34 1 4 2 1 1 5 
Barbara 45 1 3 3 1 2 4 
Steve   13 2 5 4 1 4 5 

The two programs below read the same raw data file and produce the same types of reports: 

 SPSS Program SAS program 

DATA LIST FILE =                DATA 'c:\MySASDir\survey'; 
  'c:\MyRawData\Survey.dat'        INFILE 'c:\MyRawData\Survey.dat'; 
  /Name 1-8 (A) Age 9-10           INPUT Name $ 1-8 Age 
  Sex 12 Song1 TO Song5 13-22.       Sex Song1-Song5; 
VARIABLE LABELS                    LABEL Song1 = 'Black Water/DB'  
  Song1 'Black Water/DB'             Song2 = 'Bennie and the Jets/EJ' 
  Song2 'Bennie and the Jets/EJ'     Song3 = 'Stayin Alive/BG' 
  Song3 'Stayin Alive/BG'            Song4 = 'Yellow Submarine/B' 
  Song4 'Yellow Submarine/B'         Song5 = 'Only Time/E'; 
  Song5 'Only Time/E     '.     PROC FORMAT; 
VALUE LABELS                       VALUE sex 1 = 'female' 
  sex 1 'female' 2 'male'.                   2 = 'male'; 
TITLE 'Music Market Survey'.    TITLE 'Music Market Survey'; 
LIST.                           PROC PRINT; 
FREQUENCIES                     PROC FREQ; 
  VARIABLES = Song1.               TABLE Song1 Sex * Song1; 
CROSSTABS                          FORMAT Sex Sex.; 
  /TABLES = Sex BY Song1.       RUN; 
SAVE OUTFILE = 
  'c:\MySPSSDir\survey.sav'. 

The following table shows which SPSS commands and SAS statements perform the same operations: 

SPSS command SAS statement 

DATA LIST INFILE and INPUT 
VARIABLE LABELS LABEL 
VALUE LABELS PROC FORMAT 
TITLE TITLE 
LIST PROC PRINT 
FREQUENCIES and CROSSTABS PROC FREQ 
SAVE OUTFILE DATA 



294 The Little SAS Book

SPSS display file  Here are the reports from the SPSS Viewer window exported as a text file.  

Music Market Survey
List
NAME     AGE SEX SONG1 SONG2 SONG3 SONG4 SONG5 
Gail      14  1     5     3     1     3     5 
Jim       56  2     3     2     2     3     2 
Susan     34  1     4     2     1     1     5 
Barbara   45  1     3     3     1     2     4 
Steve     13  2     5     4     1     4     5 
Number of cases read:  5    Number of cases listed:  5 
Frequencies
Statistics
Black Water/DB
---------------------
 | N | Valid   | 5 |
 |   | ------- | - |
	Missing	0
Black Water/DB 
-----------------------------------------------------------------------
 |       |       | Frequency | Percent | Valid Percent | Cumulative   | 
					Percent
Valid	3	2	40.0	40.0	40.0
	-----	---------	-------	-------------	------------
	4	1	20.0	20.0	60.0
	-----	---------	-------	-------------	------------
	5	2	40.0	40.0	100.0
	-----	---------	-------	-------------	------------
	Total	5	100.0	100.0	
-----	-----	---------	-------	-------------	------------
Crosstabs
Case Processing Summary 
------------------------------------------------------------------------
	Cases					
	--	-------	----	-------	--	-------
	Valid	Missing	Total			
	--	-------	----	-------	--	-------
	N	Percent	N	Percent	N	Percent
SEX * Black Water/DB	5	100.0%	0	.0%	5	100.0%
--------------------	--	-------	----	-------	--	-------
SEX * Black Water/DB Crosstabulation 
Count
----------------------------------------------
 |               | Black Water/DB   | Total |
 |               | -------- | - | - |       |
	3	4	5		
SEX	female	1	1	1	3
	------	--------	-	-	-----
	male	1		1	2
---	------	--------	-	-	-----
Total		2	1	2	5
----	------	--------	-	-	-----



Appendices 295

SAS output The following output is from the SAS program. You can see that the SAS output 
contains information similar to the SPSS exported text file.  

                            Music Market Survey                        1 

     Obs   Name      Age   Sex   Song1   Song2   Song3   Song4   Song5 

      1    Gail       14    1      5       3       1       3       5 
      2    Jim        56    2      3       2       2       3       2 
      3    Susan      34    1      4       2       1       1       5 
      4    Barbara    45    1      3       3       1       2       4 
      5    Steve      13    2      5       4       1       4       5 

                            Music Market Survey                        2 

                             The FREQ Procedure 

                               Black Water/DB 

                                           Cumulative    Cumulative 
         Song1    Frequency     Percent     Frequency      Percent 
        ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
             3           2       40.00             2        40.00 
             4           1       20.00             3        60.00 
             5           2       40.00             5       100.00 

                           Table of Sex by Song1 

                Sex       Song1(Black Water/DB) 

                Frequency‚ 
                Percent  ‚ 
                Row Pct  ‚ 
                Col Pct  ‚3       ‚4       ‚5       ‚  Total 
                ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                female   ‚      1 ‚      1 ‚      1 ‚      3 
                         ‚  20.00 ‚  20.00 ‚  20.00 ‚  60.00 
                         ‚  33.33 ‚  33.33 ‚  33.33 ‚ 
                         ‚  50.00 ‚ 100.00 ‚  50.00 ‚ 
                ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                male     ‚      1 ‚      0 ‚      1 ‚      2 
                         ‚  20.00 ‚   0.00 ‚  20.00 ‚  40.00 
                         ‚  50.00 ‚   0.00 ‚  50.00 ‚ 
                         ‚  50.00 ‚   0.00 ‚  50.00 ‚ 
                ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                Total           2        1        2        5 
                            40.00    20.00    40.00   100.00 



296 The Little SAS Book

Getting SPSS system files into SAS  SAS can read SPSS data files directly. To do this you 

use a LIBNAME statement with this form: 

LIBNAME libref SPSS 'filename';

After the keyword LIBNAME, you put the libref which is a nickname you make up for your file 
(similar to an SPSS file handle), then put the option SPSS followed by the actual name of your SPSS 
system or portable file. The SPSS option tells SAS to use the SPSS engine (instead of the default SAS 
data set engine) to read your data set. SAS can read SPSS data files (compressed or uncompressed) 
created in the same operating environment in which you are running SAS, or SPSS portable data 
files created in any operating environment. 

When SAS reads SPSS files, SAS preserves as much as possible. Variable names, variable labels, 
print formats, and the data remain the same. SPSS missing values become SAS missing values. 
SPSS value labels are not copied because the SAS equivalent, user-defined formats, are not stored 
in SAS data sets. If you want value labels, you can create user-defined formats with PROC 
FORMAT and then use them with FORMAT statements. See section 4.7 for an explanation of how 
to do this. 

Example The following SAS program reads the SPSS file created by the SPSS program in the 
preceding example. The SPSS file, named survey.por,  was saved in SPSS as a portable file using 
menus (Select File-Save as and use the SPSS portable file type). The LIBNAME statement tells 
SAS to use the SPSS engine to read the file. 

LIBNAME myspss SPSS 'c:\MySPSSLib\survey.por'; 

* Print the SPSS portable file; 
PROC PRINT DATA = myspss.getsurv; 

* List the contents of the SPSS portable file; 
PROC CONTENTS DATA = myspss.getsurv; 

* Convert SPSS portable file to SAS data set; 
DATA 'c:\MySASLib\sassurvey'; 
   SET myspss.getsurv; 

RUN;

First, SAS prints a copy of the SPSS portable file with PROC PRINT. Then, SAS prints a report 
describing the portable file with PROC CONTENTS. Last, the DATA step copies the SPSS portable 
file into a permanent SAS data set named SASSURVEY in the MySASLib directory: 

In this example, the name that SAS uses for the SPSS system file is MYSPSS.GETSURV. MYSPSS is 
the libref assigned to the SPSS portable file in the LIBNAME statement, and GETSURV is the 
member name. You can use any name you wish for the libref as long as it follows the rules for valid 
SAS librefs (eight characters or shorter; starts with a letter or underscore; and contains only letters, 
numerals, or underscores). Since SPSS files don't have internal names and never contain more than 
one data set, you can also use any name for the member name.  



Appendices 297

Here is the output. 

                             The SAS System                              1 

   Obs   NAME        AGE    SEX    SONG1    SONG2    SONG3    SONG4    SONG5 

    1    Gail        14      1       5        3        1        3        5 
    2    Jim         56      2       3        2        2        3        2 
    3    Susan       34      1       4        2        1        1        5 
    4    Barbara     45      1       3        3        1        2        4 
    5    Steve       13      2       5        4        1        4        5 

                              The SAS System                             2 

                          The CONTENTS Procedure 

  Data Set Name    MYSPSS._FIRST_                   Observations         . 
  Member Type      DATA                             Variables            8 
  Engine           SPSS                             Indexes              0 
  Created          9:52 Wednesday, April 17, 2002   Observation Length   64 
  Last Modified    15:15 Monday, May 20, 2002       Deleted Observations 0 
  Protection                                        Compressed           NO 
  Data Set Type                                     Sorted               NO 
  Label 
  Data Representation  Default 
  Encoding             Default 

                        Engine/Host Dependent Information 

                     ORIGSOFT  SPSS for MS WINDOWS Release 11.0 
                     SPSSINFO  (NONE) 
                     COMPRESS  NO 
                     SPSSTYPE  PORTFILE 

                  Alphabetic List of Variables and Attributes 
        #    Variable    Type    Len    Format    Label 
        2    AGE         Num       8    2. 
        1    NAME        Char      8    8. 
        3    SEX         Num       8    1. 
        4    SONG1       Num       8    2.        Black Water/DB 
        5    SONG2       Num       8    2.        Bennie and the Jets/EJ 
        6    SONG3       Num       8    2.        Staying Alive/BG 
        7    SONG4       Num       8    2.        Yellow Submarine/B 
        8    SONG5       Num       8    2.        Only Time/E 



298 The Little SAS Book

Appendix E  Coming to SAS from a Programming Language 

You can write SAS programs that do many of the tasks that standard programming languages like 
C++, FORTRAN, and Visual BASIC can do. There are many similarities between SAS and these 
languages, but there are some important differences. If you are used to programming with these 
types of languages, learning SAS will be easier if you remember the differences. 

Built-in loop The major difference is that SAS has a built-in loop for data handling. If you read 
data from a file, or process SAS data sets in the DATA step, SAS automatically loops through all 
the data. In a standard programming language, you typically need to set up an array to hold the 
data, then use a loop (DO, WHILE, or FOR) to process the array. You may need to know how many 
data elements are in the file, or check for end-of-file markers. The DATA step in SAS automates 
this. 

While SAS processes all the data, it sees only one observation at a time. All the statements in a 
DATA step operate on only one observation at a time. In a standard programming language, you 
can see all the observations at once, by referencing the appropriate array subscript. In SAS you can 
simulate this using LAG functions or other techniques, but you will find that it is seldom necessary. 

Loops DO loops are present in SAS, but you must keep in mind that a DO loop in SAS is 
executed with each pass through the DATA step. So if your loop has 6 iterations, and you have 
10 observations in your data set, the statements inside your loop will be executed 60 times—6 times 
for each of the 10 observations (assuming the INPUT or SET statement is not inside the loop). The 
built-in loop in SAS, in essence, puts a loop around your entire DATA step. Because of the built-in 
loop, arrays and DO loops are not used nearly as often in SAS programs as they are in other 
languages. 

Arrays SAS does have arrays, but they are used differently from the way they are used in  
standard programming languages. An array in SAS consists of variables. You use arrays when you 
want to do the same thing to each variable in the array, and you don’t want to write a separate 
statement for each variable. Arrays are temporary in SAS, existing only for the duration of the 
DATA step in which they are defined. Arrays provide ways to shorten and simplify your SAS 
programs. 



Appendices 299

Functions  SAS has many functions available that help simplify your programming tasks. 
Functions in SAS are used in DATA steps and, therefore, operate within an observation. If you 
want to find the minimum value for an observation across a group of variables, for example, you 
would use the MIN function. SAS has many functions available in the following categories: 
character, date and time, financial, mathematical, probability, random number, sample statistics, 
state and ZIP code, trigonometric and hyperbolic, and truncation.  

Procedures While functions operate across variables, SAS procedures operate across 
observations. If you want to find the minimum value for a variable across all observations, then use 
PROC MEANS. SAS procedures can do a lot in just a few statements. Results from procedures are 
nicely formatted and you don't have to worry about how many decimal places to print, or where to 
put the results on the page. A simple PROC PRINT statement, for example, will print all the data in 
your SAS data set, fit as many variables as it can on a page, decide on the best format for each 
variable, and label each variable at the top of every page. But, SAS is flexible, so if you don't like 
the way SAS printed your results, you can change it. 

Data types Another difference between SAS and many other languages is that SAS has only two 
types of data: numeric and character. All numbers in SAS are assumed to be double-precision 
floating-point values. You don't have to declare what type of numbers you are using. You can, 
however, change the number of bytes used to store data using the LENGTH statement. The default 
length is 8 bytes, which safely stores all numbers. If you are using small integer values, you might 
be able to use a length of 4 or fewer depending on the computer and operating environment you 
are using. The SAS documentation for your host will tell you which numbers you can safely store 
in how many bytes. 

Program structure Many programming languages are particular about the layout of 
programs. In FORTRAN, for example,  any character in column 6 indicates that the line is a 
continuation of the previous line. SAS has no restrictions on program layout. A statement can 
be indented, split on many lines, or on the same line as other statements. SAS simply reads a 
statement from one semicolon to another. In addition, SAS statements are not case sensitive. 

Compilation and execution Most programming languages have separate compile and 
execute phases. SAS does have separate phases, but when you submit a SAS program it auto-
matically compiles and executes. It is possible however, to save compiled SAS DATA steps and  
macros if you want. 



300 The Little SAS Book

Comparison of a SAS program to a C++ program The following compares a SAS 

program to a C++ program. Each program reads the following data from a file and prints it. The 
data file has three columns for the students' names, ages, and grade-point averages: 

Mary   19 3.45 
Bob    20 3.12 
Scott  22 2.89 
Marie  18 3.75 
Ruth   20 2.67 

The SAS Program 

DATA grades; 
   INFILE 'c:\MyRawData\gpa.dat'; 
   INPUT Name $ Age Gpa; 
PROC PRINT DATA = grades; 
RUN;

The C++ Program 

#include <iostream> 
#include <fstream> 
#include <iomanip> 
using namespace std; 

const int N=100; 

struct student 
{
        char name[32]; 
        int age; 
        double GPA; 
};

void main(void) 
{
        student grades[N]; 

        ifstream in("gpa.dat"); 
        if (in.fail()) 
        exit(-1); 

        int i=0; 
        while (!in.eof() && i<N) 
        { 
                in>>grades[i].name>>grades[i].age>>grades[i].GPA; 
                cout<<setw(10)<<left<<grades[i].name 
                        <<setw(10)<<grades[i].age 
                        <<fixed<<setprecision(2)<<grades[i].GPA<<endl; 
                ++i; 
        } 

        in.close(); 
}



Appendices 301

In the C++ program, the variable’s name (character array), age (integer), and gpa (double) are 
grouped in a data structure called student. Then, an array of these structures, named grades, is 
declared with an arbitrary dimension of N. Each variable in the program must be declared both in 
type and dimension (if an array). The SAS program has no such section. The variables are defined 
as either character ($) or numeric in the INPUT statement.  

Next, the C++ program opens the file and uses a while statement to read the data into grades, 
stopping when it reaches the end of the file marker (EOF). In the same step, the C++ program 
writes the data out to the standard output device.  In the SAS program, the DATA step sets up the 
built-in loop which reads all the data in the file. The INFILE statement specifies which file to read, 
and the INPUT statement defines the variables. The data are stored in a SAS data set named 
GRADES. A simple PROC PRINT prints the contents of the GRADES data set. 

Here are the results of the PROC PRINT from the SAS program. 

                            The SAS System                     1 

                      Obs    Name     Age     Gpa 

                       1     Mary      19    3.45 
                       2     Bob       20    3.12 
                       3     Scott     22    2.89 
                       4     Marie     18    3.75 
                       5     Ruth      20    2.67 

Here are the results from the C++ program. 

 Mary      19        3.45 
 Bob       20        3.12 
 Scott     22        2.89 
 Marie     18        3.75 
 Ruth      20        2.67 

Notice that SAS automatically added a default title, page number, column headings, and 
observation numbers to its report.  The way the C++ program was written, it printed just the data.  
Of course you could rewrite the C++ program to make the output look exactly like the SAS output, 
but it would take more programming. 



302 The Little SAS Book

Appendix F  Coming to SAS from SQL 

If you already know Structured Query Language (SQL), then you will be pleased to know that 
you can use SQL statements in SAS programs to create, read, and modify SAS data sets. There 
are two basic ways to use SQL with SAS: 

�� You can embed complete SQL statements in the SQL procedure.  

�� You can use WHERE statements to select rows in standard SAS DATA and PROC steps.  

Both of these features are available with Base SAS, so you don't have to license any other SAS 
software to use SQL. 

Terminology Terms such as table, row, and column that originated with relational databases 
are now standard SAS terms also. However, other terms can also be used with SAS. To help you 
understand SAS terminology, here is a brief dictionary of analagous terms: 

SQL term Analogous SAS term
column column or variable 
row  row or observation 
table table or data set 
join merge, set, update or modify 
NULL value missing value 
alias alias 
view view 
no analogous term DATA step 
no analogous term PROC step 

SQL does not contain structures like SAS DATA and PROC steps. Basically, DATA steps read 
and modify data while PROC (short for procedure) steps perform specific analyses or functions 
such as sorting, writing reports, or running statistical analyses. In SQL, reports are written 
automatically whenever you use a SELECT statement; sorting is performed by the ORDER BY 
clause; and the operations performed by most other SAS procedures don't exist in SQL. 

SAS has fewer data types than standard SQL. The character data type is the same in both 
languages. All other SQL data types (numeric, decimal, integer, smallint, float, real, double 
precision, and date) map to the SAS numeric data type. 

PROC SQL The SQL procedure in SAS follows all but  a few of the guidelines set by the 
American National Standards Institute (ANSI) for implementations of SQL. The work performed 
by SQL, and therefore by PROC SQL, can also be done in SAS by DATA steps, PROC PRINT, 
PROC SORT, and PROC MEANS. The basic form of the SQL procedure is 

PROC SQL; 
   sql-statement;

The sql-statement in PROC SQL may be any SQL statement�ALTER, CREATE, DELETE, 

DESCRIBE, DROP, INSERT, SELECT, UPDATE, or VALIDATE�with a semicolon stuck on 
the end. You can have any number of SQL statements in a single PROC SQL step.  

You can use PROC SQL interactively or in batch jobs. Unlike most other SAS procedures, PROC 
SQL will run interactively without a RUN statement. You just need to submit the program 



Appendices 303

statements. Any results from SELECT statements are displayed automatically unless you specify 
the NOPRINT option on the PROC statement like this: 

PROC SQL NOPRINT; 

An SQL view is a stored SELECT statement that is executed at run time. PROC SQL can create 
views, and other procedures can read views created via PROC SQL.  

Example  To show how PROC SQL works and to provide a comparison, here are programs using 
PROC SQL and other SAS statements to perform the same function.  

Creating a table The first program uses PROC SQL to create and print a simple table with 
three columns. This program uses CREATE, INSERT, and SELECT statements in a single PROC 
SQL step:  

LIBNAME sports 'c:\MySASLib'; 
PROC SQL; 
   CREATE TABLE sports.customer 
      (CustomerNumber num, 
       Name           char(17), 
       Address        char(20)); 

   INSERT INTO sports.customer 
      VALUES (101, 'Murphy''s Sports ', '115 Main St.        ') 
      VALUES (102, 'Sun N Ski        ', '2106 Newberry Ave.  ') 
      VALUES (103, 'Sports Outfitters', '19 Cary Way         ') 
      VALUES (104, 'Cramer & Johnson ', '4106 Arlington Blvd.') 
      VALUES (105, 'Sports Savers    ', '2708 Broadway      '); 

   TITLE 'The Sports Customer Data'; 
   SELECT * 
      FROM sports.customer; 

Notice that the LIBNAME statement sets up a libref named SPORTS, pointing to a subdirectory 
named MySASLib on the C drive (Windows). The LIBNAME statement may be different for your 
operating environment. See section 2.20 for more information about LIBNAME statements. This 
program creates a permanent SAS table named CUSTOMER in the MySASLib subdirectory. No 
RUN statement is needed; to run this program you simply submit it to SAS. Here is the output. 

                        The Sports Customer Data                     1 

              Customer 
                Number  Name               Address 
              ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                   101  Murphy's Sports    115 Main St. 
                   102  Sun N Ski          2106 Newberry Ave. 
                   103  Sports Outfitters  19 Cary Way 
                   104  Cramer & Johnson   4106 Arlington Blvd. 
                   105  Sports Savers      2708 Broadway 

The next program uses standard SAS statements to create the same table. Notice that the LIBNAME 
statement, the table name, and the TITLE statement are identical in both programs. LIBNAME 



304 The Little SAS Book

statements stay in effect for the duration of a session or job. So, if you ran these programs in a 
single session or job, you would not have to repeat the LIBNAME statement. It is repeated here 
only for the sake of completeness. 

LIBNAME sports 'c:\MySASLib'; 
DATA sports.customer; 
   INPUT CustomerNumber Name $ 5-21 Address $ 23-42; 
   DATALINES; 
101 Murphy's Sports   115 Main St. 
102 Sun N Ski         2106 Newberry Ave. 
103 Sports Outfitters 19 Cary Way 
104 Cramer & Johnson  4106 Arlington Blvd. 
105 Sports Savers     2708 Broadway 
   ; 
PROC PRINT DATA = sports.customer; 
TITLE 'The Sports Customer Data'; 
RUN;

Here is the output from the standard SAS program. It looks a little different from the previous 
report, but it contains the same information. 

                        The Sports Customer Data                      2 

                  Customer 
           Obs     Number     Name                 Address 

            1       101     Murphy's Sports      115 Main St. 
            2       102     Sun N Ski            2106 Newberry Ave. 
            3       103     Sports Outfitters    19 Cary Way 
            4       104     Cramer & Johnson     4106 Arlington Blvd. 
            5       105     Sports Savers        2708 Broadway 

Reading an existing table The next two programs read the CUSTOMER table and select one 
row. Here is the PROC SQL version of this program: 

LIBNAME sports 'c:\MySASLib'; 
PROC SQL; 
   TITLE 'Customer Number 102'; 
   SELECT * 
      FROM sports.customer 
      WHERE CustomerNumber = 102; 



Appendices 305

The PROC SQL output looks like this. 

                        Customer Number 102                  3 

                Customer 
                  Number  Name               Address 
             ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                     102  Sun N Ski          2106 Newberry Ave. 

The following program uses SAS DATA and PROC steps to select and print the same row from the 
CUSTOMER table: 

LIBNAME sports 'c:\MySASLib'; 
DATA sunnski; 
   SET sports.customer; 
   IF CustomerNumber = 102; 
PROC PRINT DATA = sunnski; 
   TITLE 'Customer Number 102'; 
RUN;

Here is the PROC PRINT output. 

                          Customer Number 102                         4 

                      Customer 
               Obs     Number       Name            Address 

                1       102     Sun N Ski    2106 Newberry Ave. 

Using the Query window to build a query There is another way to write PROC SQL 
statements: the Query window. You can open the Query window by selecting Query from the 
Tools menu. The Query window guides you through the process of building a query and then 
executes your query. You can see the SQL statements created by the Query window by selecting 
either Show Query... or Preview Window... from the Tools pull-down menu.  



306 The Little SAS Book

WHERE statement The WHERE statement in SAS is modeled after the WHERE clause of SQL, 

and  is similar to a subsetting IF statement. However, there are some differences in how a WHERE 
statement and a subsetting IF work.  While subsetting IFs can appear only in DATA steps, WHERE 
statements can be used in DATA or PROC steps. WHERE statements are generally more efficient 
than subsetting IF statements, especially when they allow you to eliminate a DATA step by sub-
setting directly in a procedure. When WHERE statements are used in a DATA step, SAS applies 
WHERE statements earlier than IF statements. This has several repercussions: 

�� The WHERE statement is more efficient than a subsetting IF because it avoids reading 
unwanted rows.  

�� The WHERE statement can only select rows from existing SAS tables. The IF statement, 
however, can select rows from existing SAS tables or from raw data files being read with 
INPUT statements. 

�� With a WHERE statement, you can select rows based only on the values of columns being 
read. With a subsetting IF statement, you can also select rows based on the value of a 
column created in the current DATA step. 

�� The WHERE and IF statements may produce different results when two tables are 
combined in a MERGE, SET, or UPDATE statement. Operations that occur after SAS 
applies WHERE statements but before SAS applies IF statements may cause the 
statements to select different rows. 

Examples To show how the WHERE statement works and to provide a comparison with the IF 
statement, here are programs using WHERE and IF statements to perform the same functions. All three 
of these programs read the CUSTOMER SAS table created by the previous programs. The goal of these 
programs is to select and print one row from an existing SAS table: 

Subsetting IF This program uses a subsetting IF statement to select one row: 

LIBNAME sports 'c:\MySASLib'; 
DATA outfitters; 
   SET sports.customer; 
   IF Name = 'Sports Outfitters'; 
PROC PRINT DATA = outfitters; 
RUN;

Here is the output. 

                          The SAS System                      1 

                      Customer 
               Obs     Number         Name             Address 

                1       103     Sports Outfitters    19 Cary Way 



Appendices 307

WHERE statement in a DATA step The next program uses a WHERE statement in the 
DATA step and then prints the results with PROC PRINT: 

LIBNAME sports 'c:\MySASLib'; 
DATA outfitters; 
   SET sports.customer; 
   WHERE Name = 'Sports Outfitters'; 
PROC PRINT DATA = outfitters; 
RUN;

The output looks like this. 

                            The SAS System                      2 

                     Customer 
              Obs     Number         Name             Address 

               1       103     Sports Outfitters    19 Cary Way 

WHERE statement in a PROC step The last program uses a WHERE statement directly in 
the PROC PRINT: 

LIBNAME sports 'c:\MySASLib'; 
PROC PRINT DATA = sports.customer; 
   WHERE Name = 'Sports Outfitters'; 
RUN;

Here is the output. 

                           The SAS System                       3 

                    Customer 
             Obs     Number         Name             Address 

              3       103     Sports Outfitters    19 Cary Way 

Notice that the row number for the first two reports is 1 while the row number for the last report 
is 3. This happens because the first two programs create a table with one row and then print it. In 
contrast, the last program never creates a table; it simply reads the existing table by searching for 
the right row, which happens to be number 3. 



308



Index     309

Index

A
ABORT statement   6 
ACCESS engine   31 
Access files 
        reading   34-35, 62-63 
        writing   238-239, 242-243 
ACROSS usage option   134, 136-137 
Active Libraries window   22-25 
AFTER location in REPORT procedure   138-139 
AGREE option in FREQ procedure   220 
ALL keyword in TABULATE procedure   124 
_ALL_ variable name list   96 
        in PUT statements   268-269  
ALPHA= option in MEANS procedure   218-219 
analysis of variance   228-231 
ANALYSIS usage option   134-135 
Analyst application   233 
AND operator   82-83, 102  
ANOVA procedure   228-231 
arithmetic operators   76-77 
ARRAY statement   94-95 
arrays 
        compared to programming languages   298  
        SAS arrays   94-95  
ASCII files   36 
assignment statements   76-77 
        dates   88-89  
        functions   78-81  
ATTRIB statement   276 
attributes, style 
        PRINT procedure   158-159  
        REPORT procedure   160-161 
        TABULATE procedure   162-163  
        table of   166-167  
autocall library, macro   205 
automatic variables 
        _ERROR_   196  
        FIRST.byvariable   196-197  
        LAST.byvariable   196-197  
        macro   208-209  
        _N_   196-197  

B
BACKGROUND style attribute   160-167 
BACKGROUNDIMAGE style attribute    
        166-167  
batch mode   11 
BCOLOR= option in TITLE statement   156-157 
BEFORE location in REPORT procedure   138 
BESTw. format   110-111 
BETWEEN AND operator   102 
binary data informat   44-45 
BODYTITLE option in ODS RTF statement  
        152-153  
BODY= option in ODS HTML statement      
        150-151  
BOLD option in TITLE statement   156-157 
BON option in ANOVA procedure   228 
Bonferroni t tests   228 
BOTTOMMARGIN= system option   27 
Bowker’s test   220 
box plot   216 
BOX= option in TABULATE procedure      
        126-127  
BREAK statement in REPORT procedure 
        138-139 
BY groups, definition   104 
BY statement   100 
        FIRST.byvariable   196-197  
        ID statement with BY   180-181  
        LAST.byvariable   196-197  
        MEANS procedure   116-117  
        MERGE statement   176-179  
        PRINT procedure   106-107  
        SET statement   174-175  
        SORT procedure   104-105  
        TRANSPOSE procedure   194-195  
        UPDATE statement   184-185  
BY variables 
        definition   104  
        FIRST. and LAST.   196-197  

C
C++ programming language 
        compared to SAS   300-301  
CALL SYMPUT   210-211 



310      Index 

capitalization in SAS programs   xiii, 5 
CARDS statement   36 
CEDA   248-249 
CENTER system option   27 
character data 
        converting to numeric   266-267  
        definition   4  
        formats   110-111  
        functions   80-81  
        informats   44-45  
        length   276-277  
        truncation error   276-277  
character-values-converted note   266-267 
_CHARACTER_ variable name list   96-97 
$CHARw. informat   44-45 
CHISQ option in FREQ procedure   220-221 
chi-square statistic with FREQ procedure     
        220-221  
CHTML destination   246 
CIMPORT procedure   249 
CLASS statement 
        ANOVA procedure   228-231  
        MEANS procedure   116  
        STYLE= option in TABULATE procedure  
          162-163  
        TABULATE procedure   122-131  
CLASSLEV statement   162-163 
CLIPBOARD keyword in FILENAME statement 
        64  
CLM option in MEANS procedure   218-219 
CLOSE option  
        ODS HTML statement   150-151  
        ODS PDF statement   154-155  
        ODS PRINTER statement   154-155  
        ODS RTF statement   152-153  
Cochran-Armitage test   220 
Cochran-Mantel-Haenszel statistics   220 
Cochran’s Q test   220 
coded data, custom formats   112-113 
coefficient of variation 
        ANOVA procedure   230-231  
        MEANS procedure   218  
        REG procedure   226  
colon modifier   48-49 
color  
        PRINT procedure   158-159  
        REPORT procedure   160-161 

        style attributes   166-167  
        style templates   145 
        TABULATE procedure   162-163  
COLOR= option in TITLE statement   156 
Column Attributes window   32 
COLUMN location in STYLE= option   160-161 
column pointers 
        +n   43  
        @’character’   48-49  
        @n   46-47, 244-245  
COLUMN statement in REPORT procedure 
        132-141 
column-style input   40-41 
columns of data 
        definition   4  
        Viewtable window   32-33  
COLUMNS= option  
        ODS PCL statement   154  
        ODS PDF statement   154  
        ODS PRINTER statement   154  
        ODS PS statement   154  
        ODS RTF statement   152  
combining SAS data sets 
        concatenating data sets   172-173  
        grand total with original data   182-183  
        interleaving data sets   174-175  
        merging summary statistics   180-181  
        one observation with many   182-183  
        one-to-many match merge   178-181  
        one-to-one match merge   176-177  
        selecting observations during a merge    
           188-189  
        stacking data sets   172-173  
        updating a master data set   184-185  
command bar in SAS windowing environment 
        13  
commas 
        reading comma-delimited data   58-61 
        reading numbers containing commas   42, 
           44-45 
        writing comma-delimited data   238-241, 
           246-247 
        writing numbers containing commas    
           110-111  
COMMAw.d format   110-111 
COMMAw.d informat   44-45 



Index     311

comments 
        * ;   3 
        /*  */   3 
         /*  */ in OS/390   279  
        unmatched   278-279  
comparison operators   82-83, 102-103 
compile and execute phases   210, 270-271 
COMPRESS= data set option   281 
concatenating SAS data sets   172-173 
concatenation operator, ||   81 
conditional statements  
        macro   208-209  
        standard   82-87  
confidence limits   218-220 
constants 
        ASCII   58  
        character   76  
        date   88-89  
        hexadecimal   58  
        name   5  
        numeric   76  
CONTAINS operator   102 
CONTENTS procedure   72-73 
        debugging programs   275  
Contents window   24 
CONTENTS= option in ODS HTML statement 
        150-151  
converting character to numeric and vice versa    
        266-267  
CORR procedure   222-223 
correlations   222-223 
counts, frequency   120-121, 124-125, 140-141 
CPORT procedure   236-237, 249 
CREATE statement in SQL procedure   303 
cross-tabulations   120-121, 124-125 
CSS option in MEANS procedure   218 
CSV destination  246-247 
CSV files 
        reading   58-61  
        writing    238-241, 246-247 
CSV value in the DBMS= option 
        IMPORT procedure   60  
        EXPORT procedure   240 
CSVALL destination   246 
cumulative totals 
        FREQ procedure   121  
        sum statement in DATA step   92-93  

custom formats, FORMAT procedure   112-113 
CV option in MEANS procedure   218 

D
D3D style template   21 
data dictionary   72-73 
data engines   31 
        SPSS   296-297  
data entry with Viewtable window   32-33 
DATA location in STYLE= option   158-159 
DATA _NULL_ 
        writing custom reports   114-115  
        writing raw data files   244-245  
DATA= option  
        data set option   186-187  
        statement option   100  
data, reading   30-31, 34-65 
        column style   40-41  
        comma-separated values   58-61  
        delimited data   58-61  
        internal   36 
        messy data    48-49  
        methods for getting into SAS   30-31 
        missing data at end of line   57  
        mixing input styles   46-47  
        multiple lines of data per observation   50-51  
        multiple observations per line of data   52-53  
        non-standard format   42-43  
        part of a data file   54-55, 253  
        PC files  34-35, 62-65         
        skipping lines of raw data   50-51, 56  
        skipping over variables   40-41  
        space-delimited   38-39  
        SPSS system files   296-297 
        variable length records   57  
        variable length values   48-49  
data set options 
        compared to statement options   186-187  
        compared to system options   186-187  
        COMPRESS=   281  
        DROP=   186-187, 281  
        FIRSTOBS=   186-187, 253  
        IN=   186-189  
        KEEP=   186-187, 281  
        OBS=   186-187, 253  
        RENAME=   186-187  
data sets, SAS 



312      Index 

        changing observations to variables   194-195  
        combining a grand total with data   182-183  
        combining one observation with many  
          182-183  
        compressing   281  
        concatenating   172-173  
        contents of   25, 72-73 
        creating from procedure output   148-149  
        definition   4  
        interleaving data sets   174-175  
        inverting, TRANSPOSE procedure   194-195  
        merging, one-to-many   178-181  
        merging, one-to-one   176-177  
        merging summary statistics   180-183  
        modifying a single data set   170-171  
        names   5  
        options   186-187  
        permanent   66-71  
        permanent, examples   103, 170-171, 184-185, 
           243  
        printing   106-107  
        reading a single data set   170-171  
        saving    66-71  
        saving summary statistics to   118-119,  
          148-149  
        selecting observations during a merge  
          188-189  
        size   5  
        sorting   104-105  
        stacking data sets   172-173  
        subsetting IF statement   86-87  
        subsetting WHERE statement   102-103, 306  
        temporary versus permanent   66-67  
        updating a master data set   184-185  
        Viewtable window   24-25, 32-33  
        WORK library  22, 66-67  
        writing multiple data sets   190-191  
DATA statement   6-7 
        multiple data sets   190-191  
        _NULL_ data set name   114-115, 244-245 
        permanent data sets   66-71  
DATA step  6-9 
        built-in loop   8-9  
        combining SAS data sets   172-189  
        creating and modifying variables   76-97  
        debugger   270-271  
        definition   6  

        reading raw data files    30-31, 36-59  
        reading a single SAS data set   170-171  
        writing raw data files   244-245  
        wrong results, no message   268-269  
data types   4 
        assignment statements   76-77  
        converting, character to numeric   266-267  
        converting, numeric to character   266-267  
data, writing   236-247 
        delimited   238-241, 244-247  
        methods  236-237         
        PC files   238-239, 242-243 
        raw data   238-241, 244-247 
DATABASE= option 
        EXPORT procedure   242-243 
        IMPORT procedure   63  
DATAFILE= option in IMPORT procedure 
        60-63  
DATALINES statement   36 
DATASTMTCHK= system option   257 
DATATABLE= option in IMPORT procedure 
        63  
DATE system option   27 
DATEJUL function   80-81, 90-91 
dates   88-91 
        automatic macro variables   208-209  
        constants   88-89  
        converting dates   80-81, 88-89  
        definition of a SAS date   88  
        formats, table of   90-91, 110-111  
        functions, table of   80-81, 90-91  
        informats, table of   44-45, 90-91  
        Julian dates   90-91  
        printing current date on output   27  
        reading raw data with   42-43  
        setting default century   88  
        today’s date   80-81, 88-91  
DATETIMEw. informat   90-91 
DATETIMEw.d format   90-91 
DATEw. format   90-91 
DATEw. informat   90-91 
DAY function   90-91 
DAYw. format   90-91 
dBase files 
        reading   34-35, 62-63 
        writing   238-239, 242-243 
DBMS= option 



Index     313

        IMPORT procedure   60-63  
        EXPORT procedure   240-243  
DDE   64-65 
DDMMYYw. informat   90-91 
DEBUG option   270 
debugging SAS programs   252-281 
        avoiding errors   252-253  
        DATA step debugger   270-271  
        fixing errors   254-255  
        INPUT reached past end of line  
          258-259, 261  
        invalid data   261-263  
        invalid option   272-273  
        lost card   260-261  
        macros   212-213  
        missing semicolon   256-257  
        missing values were generated   264-265  
        option not recognized   272-273  
        out of memory or disk space   280-281  
        SAS stops in middle of job   278-279  
        statement not valid   272-273  
        truncation of character data   276-277  
        values have been converted   266-267  
        variable not found   274-275  
        variable uninitialized   274-275  
        wrong results, no message   268-269  
decimal places 
        printing data   108-109  
        reading data   42-43  
DEFAULT style template   21, 144-145, 150-151 
DEFINE statement in REPORT procedure    
       134-137 
DELETE statement   86-87 
deleting  
        observations   86-87  
        variables   186-187  
delimited data 
        reading   58-61  
        writing   238-241, 246-247 
DELIMITER= option 
        FILE statements   244  
        INFILE statements   58-59  
DELIMITER= statement in IMPORT procedure 
        60-61  
DESCENDING option in SORT procedure 
        104-105  
descriptive statistics   116-141, 216-219 

destinations, output 
        CSV   144 
        CSVALL   144 
        DOCUMENT   144 
        HTML   20-21, 144-145, 150-151  
        LISTING   18-19,144  
        MARKUP   144  
        OUTPUT   144  
        PCL   144, 154-155  
        PDF   144, 154-155  
        PRINTER   144-145, 154-155  
        PS   144, 154-155  
        RTF   144-145, 152-153  
        XML   144  
dictionary, data   72-73 
dimensions in TABULATE procedure   122-125 
disk space, running out of   280-281 
Display Manager    10-25 
DISPLAY usage option   134 
DLM value in the DBMS= option 
        IMPORT procedure   60  
        EXPORT procedure   240  
DLM= option 
        FILE statements   244  
        INFILE statements   58-59  
%DO statements   208-209 
DO statement   82-83 
        arrays   94-95  
        with OUTPUT statement   192  
DOCUMENT destination    144 
documentation, SAS online   284 
documenting  
        data sets   72-73  
        programs   3  
dollar signs 
        printing data   110-111   
        reading data   42, 44-45  
DOLLARw.d format   110-111 
DROP= data set option   186-187, 281 
DSD option 
        FILE statements   244  
        INFILE statements   58-59, 64-65  
DTRESET option in ODS RTF statement   152 
DUNCAN option in ANOVA procedure   228 
Duncan’s multiple range test   228 
duplicate observations, eliminating   104-105 
Dynamic Data Exchange   64-65 



314      Index 

E
editing data with Viewtable window   32-33 
editor   12, 14-15 
        RECALL command   15  
        SUBMIT command   14  
        Syntax Sensitive   253 
electronic newsletters   285 
%ELSE statement   208-209 
ELSE statement   84-85 
%END statement   208-209 
END statement   82-83 
ENDSAS statement   11 
engines   31 
        SPSS   296-297  
Enhanced Editor   12, 14-15 
entering data with Viewtable window   32-33 
SAS EQ comparison operator   82, 102 
equations 
        assignment statements   76-77  
        generating data   192  
_ERROR_ automatic variable   196 
        invalid data message   262-263  
errors
        avoiding errors   252-253  
        fixing errors   254-255  
        INPUT reached past end of line  
          258-259, 261  
        invalid data   262-263  
        invalid option   272-273  
        lost card   260-261  
        missing semicolon   256-257  
        missing values were generated   264-265  
        option not recognized   272-273  
        out of memory or disk space   280-281  
        SAS stops in middle of job   278-279  
        statement not valid   272-273  
        truncation of character data   276-277  
        values have been converted   266-267  
        variable not found   274-275  
        variable uninitialized   274-275  
        wrong results, no message   268-269  
EURDFDDw. format   90-91 
Ew. format   110-111 
EXACT option in FREQ procedure   220 
EXAMINE command in DATA step debugger 
        271  
EXCEL engine   31 

Excel files 
        reading   34-35, 62-65  
        writing   238-239, 242-243  
excluding output objects   147 
executing SAS programs 
        methods   10-11  
        SAS windowing environment   14-15  
Explorer window   12-13, 22-25 
EXPORT procedure
       delimited files  240-241 
       PC files  242-243 
Export Wizard   238-239 
exporting data 236-249 
        delimited files   238-241, 244-247 
        methods   236-237 
        PC files   238-239, 242-243  
        raw data files   238-241, 244-247 
        to other operating environments    
           237, 248-249 
expressions
        mathematical   76-77  
        using dates   88-89  
        using functions   78-79  
external data   36-37 

F
F value 
        ANOVA procedure   230-231  
        REG procedure   226  
FAT file systems   249 
FILE statement 
        DLM= option   244  
        DSD option   244  
        PRINT option   114-115  
        writing raw data files   244-245  
        writing reports   114-115  
FILENAME statement   64-65 
FILE= option 
        ODS PCL statement   154  
        ODS PDF statement   154-155  
        ODS PRINTER statement   154  
        ODS PS statement   154  
        ODS RTF statement   152-153  
FIRST.byvariable   196-197 
FIRSTOBS= option 
        data set option   186-187, 253  



Index     315

        INFILE statement   56, 253  
Fisher’s exact test   220 
flat files   30, 36 
FLYOVER style attribute   166-167 
font, style attributes   166-167 
FONT= option in TITLE statement   156-157 
FONT_FACE style attribute   166-167 
FONT_SIZE style attribute   166-167 
FONT_STYLE style attribute   166-167 
FONT_WEIGHT style attribute   166-167 
FOOTNOTE statement   100-101, 156-157 
FOREGROUND style attribute   166-167 
foreign hosts, exporting to   248-249 
FORMAT procedure   112-113 
        with TABULATE procedure   128-129  
FORMAT statement   72-73, 108-109 
        DATA step compared to PROC step 108  
FORMAT= option in TABULATE procedure 
        126-127, 130-131 
formats 
        ATTRIB statement   276  
        dates   89-91  
        FORMAT statement   72-73, 108-109  
        input formats   42-45  
        SPSS   291  
        table of  110-111  
        use 108-109  
        user-defined   112-113  
formatted style input   42-43 
FRAME= option in ODS HTML statement 
        150-151  
free formatted style input   38-39 
FREQ procedure   120-121, 220-221  
frequency tables   120-125, 140-141, 220-221 
_FREQ_ variable in MEANS procedure   118-119 
functions 
        dates   88-91  
        INPUT function   267  
        PUT function   267  
        table of   80-81  
        use   78-79  

G
gamma   220 
GE comparison operator   82 , 102  
generating data 

        DO and OUTPUT statements    192  
GETNAMES= statement   60-61 
global macro variables   201 
GRANDTOTAL location in STYLE= option     
        158-159  
graphs 
        box plots   216  
        normal probability plot   216  
        regression statistics   224-227  
        stem-and-leaf plots   216  
GROUP usage option 134, 136-137 
grouping observations 
        IF-THEN/ELSE statements   84-85  
GT comparison operator   82, 102 

H
HEADER location in STYLE= option   158-160 
headers  
        changing in TABULATE output   128-129  
        reading raw data   56  
        specifying style for   158-163  
HEADLINE option in REPORT procedure    
        132-133 
HEADSKIP option in REPORT procedure   132 
HEIGHT= option in TITLE statement   156-157 
Help, online   284 
hexadecimal data 
        constants   58  
        format   110-111  
        informat   44-45  
$HEXw. format   110-111 
$HEXw. informat   44-45 
HIGH keyword in FORMAT procedure 
        112-113  
HOEFFDING option in CORR procedure   222 
HTML data files, writing   246-247 
HTML output   20-21, 144-145, 150-151 
hypertext links, style attribute   166-167 
HyperText Markup Language   20-21, 144-145, 
        150-151 

I
IBw.d informat   44-45 
ID statement 
        BY statement with ID   180-181  
        PRINT procedure   106  



316      Index 

        TRANSPOSE procedure   194-195  
IF statement, subsetting   86-87 
IF-THEN statements   82-83 
%IF-%THEN statements   208-209 
IF-THEN/ELSE statements   84-85 
images   166-167 
IMPORT procedure 
        delimited files   60-61  
        PC files   62-63  
Import Wizard   34-35 
importing data  
        delimited   34-35, 60-61  
        from other software   34-35, 62-63  
        methods   30-31 
        PC files   34-35, 62-63  
IN operator   102 
IN= data set option   186-189 
indention in SAS programs   3 
INFILE statement   36-37 
        DELIMITER= option   58-59, 64-65  
        DLM= option   58-59, 64-65  
        DSD option   58-59, 64-65  
        examples by operating environment   36-37  
        FIRSTOBS= option   56, 253  
        LRECL= option   37  
        MISSOVER option   57, 259  
        NOTAB option   64-65  
        OBS= option   56, 253  
        TRUNCOVER option   57, 259  
INFORMAT statement   72-73 
informats 
        ATTRIB statement   276  
        colon modifier   48-49  
        dates   88-91  
        INFORMAT statement   72-73  
        table of   44-45  
        use   42-43  
input formats   42-47 
        SPSS   291  
INPUT function   266-267 
INPUT reached past end of line 
        message in log   37, 258-259, 261  
INPUT statement 
        column style   40-41  
        data with embedded blanks   40-41  
        delimited data   58-59  
        formatted style   42-45  

        free formatted   38-39  
        list style   38-39  
        mixing input styles   46-47  
        multiple INPUT statements   54-55, 193  
        multiple lines per observation   50-51  
        multiple observations per line   52-53  
        reading blanks as missing   40-41  
        reading non-standard data   42-43  
        reading part of a raw data file   54-55  
        skipping lines of raw data   52-53  
        skipping over variables   40-41  
        space-delimited   38-39  
INSERT statement in SQL procedure   302-303 
INT function   80-81 
integer binary informat   44-45  
integer data 
        data types   4  
        truncating decimal places   80-81  
interactive line mode   11 
interactive SAS   10-11 
interleaving SAS data sets   174-175 
internal data   36 
internet browser, creating files for 
        20-21, 150-151  
invalid data message in log   262-263 
        lost card note   261  
invalid option message in log   272-273 
inverting data sets   194-195 
IS NOT MISSING operator   102 
ITALIC option in TITLE statement    156-157 
italics, explanation of usage    xiii 
iterative logic   94-95 

J
Julian dates   90-91 
JULIANw. format   90-91 
JULIANw. informat   90-91 
justification 
        character variables   80-81  
        output   27  
        style attributes    161, 163, 166-167  
        titles and footnotes   156-157  
JUST style attribute   161, 163, 166-167 
JUSTIFY= option in TITLE statement   156-157 



Index     317

K
kappa statistics   220 
KEEP= data set option   186-187 
        to save disk space   281  
KENDALL option in CORR procedure   222 
Kendall’s tau-b   220, 222 
KEYLABEL statement   128 
kurtosis 
        MEANS procedure   218  
        UNIVARIATE procedure   216-217  
KURTOSIS option in MEANS procedure   218 

L
LABEL option in PRINT procedure   106-107 
LABEL statement   72-73 , 101 
        in TABULATE procedure   128  
labels 
        ATTRIB statement   276  
        compared to SPSS   291  
        value   112-113  
        variable   72-73, 101  
lambda   220 
LAST.byvariable   196-197 
LCLM option in MEANS procedure   218 
LEFT function   80-81 
LEFTMARGIN= system option   27 
length of a variable   73, 276-277, 280-281 
LENGTH statement 
        character data   276-277, 280-281  
        numeric data   280-281  
%LET statement   202-203 
LIBNAME statement   68-69  
        OUTREP= option   248-249 
        SHORTFILEEXT option   249 
        SPSS system files   296  
library, SAS data   22-25, 66-71 
libref   23, 66-71 
licensing SAS software   x 
line pointers 
        #n   50-51, 244  
        /   50-51, 244  
line-hold specifiers 
        @ compared to @@   55  
        @, trailing   54-55, 244  
        @@, double trailing   52-53  
LINEPRINTER option in REG procedure   224 
LINESIZE= system option   27 
links, style attributes for hypertext   166-167 

list style input   38-39 
LISTING output   18-19,144 
local macro variables   201 
locations in STYLE= option   158-161 
LOG function   80-81 
log, SAS   16-17 
        errors, warnings, and notes   254-255  
        notes when reading raw data   37  
        notes when writing raw data files   245  
        writing in with PUT statements   268-269  
Log window 
        DATA step debugger   270-271  
        SAS windowing environment   12-13, 15-16  
LOG10 function   80-81 
logarithmic functions   80-81 
logical operators   82-83, 102-103 
logical record length of raw data files   37 
loop
        DATA step, built-in   8-9, 298 
        DO loop   94-95 
lost card note in log   260-261 
Lotus files 
        reading   34-35, 62-63 
        writing   238-239, 242-243 
LOW keyword in FORMAT procedure   112 
LRECL= option in INFILE statements   37 
LT comparison operator   82, 102 

M
%MACRO statement   204-207 
MACRO system option   201 
macros   200-213 
        autocall libraries   205  
        automatic macro variables   208-209  
        CALL SYMPUT   210-211  
        concepts   200-201  
        debugging errors   212-213  
        %DO statements   208-209  
        %ELSE statement   208-209  
        %END statement   208-209  
        %IF-%THEN statements   208-209  
        invoking   204  
        %LET statement   202-203  
        local versus global variables   201  
        %MACRO statement   204-207  
        MACRO system option   201  



318      Index 

        macro variables, definition   200  
        %MEND statement   204-205  
        MERROR system option   212-213  
        MLOGIC system option   212-213  
        MPRINT system option   212-213  
        parameters   206-207  
        quotation marks   212  
        SAS macro processor   200-201  
        SERROR system option   212-213  
        SYMBOLGEN system option   212-213  
        &SYSDATE macro variable   208  
        %THEN statement   208-209  
MARKUP destination   144 
master data set definition   184 
match merging 
        IN= data set option   186-189  
        one-to-many match merge   178-181  
        one-to-one match merge   176-177  
        summary statistics   180-183  
mathematical expressions   76-77 
MAX function   80-81 
MAX keyword 
        REPORT procedure   140 
        TABULATE procedure   124 
MAX option in MEANS procedure   116 
maximum value 
        across observation   80-81  
        across variable   92-93, 116-117, 196-197  
        FIRST. and LAST. byvariable   196-197  
        MAX function   80-81  
        MEANS procedure   116-117  
        REPORT procedure 140 
        RETAIN statement   92-93  
        TABULATE procedure   124  
        UNIVARIATE procedure  217  
McNemar’s test   220 
MDY function   90-91 
MEAN function   80-81 
        missing data   265  
MEAN keyword 
        REPORT procedure   140-141 
        TABULATE procedure   124-125  
MEAN option in MEANS procedure   116 
mean square 
        ANOVA procedure   230-231  
        REG procedure   226  
means 

        MEAN function   80-81  
        MEANS procedure   116-117  
        multiple comparisons   228-231  
        REPORT procedure   140-141 
        TABULATE procedure   124-125  
        UNIVARIATE procedure   217  
MEANS procedure   116-119, 180-183, 218-219 
MEANS statement, ANOVA procedure 
        228-231  
MEASURES option in FREQ procedure   220 
median 
        MEANS procedure   116, 218-219  
        REPORT procedure   140 
        TABULATE procedure   124  
        UNIVARIATE procedure   216-217  
MEDIAN keyword 
        REPORT procedure   140 
        TABULATE procedure   124  
MEDIAN option in MEANS procedure 
        116, 218-219  
memory, running out   280-281 
%MEND statement   204-205 
menus, pull-down and pop-up   13 
MERGE statement   176-181 
        BY statement   176-181  
        IN= data set option   186-189  
        one-to-many match merge   178-181  
        one-to-one match merge   176-177  
        summary statistics   180-181  
MERROR system option   212-213 
Microsoft Excel files  
        reading   34-35, 62-65 
        writing   238-239, 242-243 
messy raw data, reading   48-49 
Microsoft Access files   
        reading   34-35, 62-63,  
        writing   238-239, 242-243  
MIN function    80-81 
MIN keyword  
        REPORT procedure   140 
        TABULATE procedure   124 
MIN option in MEANS procedure    116 
minimum value 
        across observation   80-81  
        across variable    92-93, 116-117, 196-197  
        FIRST. and LAST. byvariable   196-197  
        MEANS procedure   116-117  



Index     319

        MIN function   80-81  
        REPORT procedure   140 
        RETAIN statement   92-93  
        TABULATE procedure   124  
        UNIVARIATE procedure   217  
missing data values   5 
        assignment statements   77, 264-265  
        end of raw data line   57  
        finding number   116-117, 120-121  
        IF-THEN statements   84-85  
        match merge   177  
        reading blanks as   40-41  
        REPORT procedure   134-135 
        SET statement   173  
        SORT procedure   104-105  
        TABULATE statement   122 
        UPDATE statement   184-185  
MISSING option 
        REPORT procedure   134-135 
        TABULATE procedure   122 
missing semicolon   256-257 
missing values generated note   77, 264-265 
MISSOVER option in INFILE statements 
        57, 259  
MISSTEXT= option in TABULATE procedure 
        126-127  
mixing input styles   46-47 
MLOGIC system option   212-213 
MMDDYYw. format   90-91 
MMDDYYw. informat   90-91 
mode of a variable   216-217 
MODEL statement 
        ANOVA procedure   228-230  
        REG procedure   224-227  
modes of running SAS   10-11 
modifying SAS data sets 
        MERGE statement   176-181  
        SET statement   170-174, 182-183  
        UPDATE statement   184-185  
MONTH function   90-91 
MPRINT system option   212-213 
MSGLEVEL= system option   248-249 
multiple comparisons   228-231 
multiple lines per observation, reading   50-51 
multiple observations per line, reading   52-53 

N
_N_ automatic variable   196-197 
        invalid data message   262-263  
N keyword 
        REPORT procedure   140-141 
        TABULATE procedure   124 
N option in MEANS procedure   116, 218-219 
_NAME_ variable  
        TRANSPOSE procedure   194-195  
names for  
        data sets   5, 66  
        filerefs   5  
        formats   5  
        librefs   5, 23, 66-71  
        macros   204  
        macro variables   202  
        variables   5  
NE comparison operator   82, 102 
New Library window   67 
newsletters, electronic   285 
NMISS keyword 
        REPORT  procedure   140 
        TABULATE procedure   124 
NMISS option in MEANS procedure   116 
NOCENTER system option   27 
NODATE system option   27 
NODUPKEY option in SORT procedure     
        104-105 
noninteractive SAS   10-11 
NONUMBER system option   27 
NOOBS option in PRINT procedure   106 
NOPRINT option 
        MEANS procedure   118-119  
        SQL procedure   303  
NORMAL option UNIVARIATE procedure 
        216  
normal probability plots   216 
normality test   216 
NOSYNC system option   65 
NOTAB option in INFILE statement   64-65 
notes in SAS log   16-17, 254-255 
        INPUT reached past end line  
          37, 258-259, 261  
        invalid data   262-263  
        lost card   260-261  



320      Index 

        missing values were generated  77, 264-265  
        values have been converted   266-267  
        variable uninitialized   274-275  
NOWAIT system option   65 
NOWINDOWS option in REPORT procedure   
132-133 
_NULL_ data set name   114-115, 244-245 
NUMBER system option   27 
numbering observations, _N_ variable 
        196-197  
numeric data 
        commas, reading   42, 44-45  
        commas, writing   110-111  
        converting to character   266-267  
        definition   4  
        formats   110-111  
        functions   80-81  
        informats   44-45  
        length   280-281  
        reading non-standard   42-43  
        reading standard   38-41  
numeric values converted note  266-267 
_NUMERIC_ variable name list   96-97 

O
OBS location in STYLE= option   158-159 
OBS= option 
        data set option   186-187  
        INFILE statements   56, 253  
observations 
        changing to variables   194-195  
        combining single observation with many  
           182-183  
        creating a numbering variable   196-197  
        definition   4  
        deleting   86-87  
        duplicate, eliminating   104-105  
        grouping with IF-THEN/ELSE   84-85  
        interleaving   174-175  
        making several from one   192-193  
        merging   176-179  
        printing   106-107  
        reading multiple lines per observation  
          50-51  
        reading multiple observations per line  
          52-53  

        sorting   104-105  
        subsetting, DELETE statements   86-87  
        subsetting, FIRSTOBS=   186-187  
        subsetting, IF   86-87  
        subsetting, IN=   186-189  
        subsetting, OBS=   186-187  
        subsetting, WHERE statements  
          102-103, 306-307  
        tracking with IN=   186-189  
        updating   184-185  
OBSHEADER location in STYLE= option 
        158-159  
odds ratios   220-221 
ODS   20-21, 144-167 
ODS CSV statement   246-247 
ODS EXCLUDE statement   147 
ODS HTML statement   150-151, 246-247 
ODS OUTPUT statement    148-149 
ODS PCL statement   154 
ODS PDF statement   154-155 
ODS PRINTER statement   154 
ODS PS statement   154 
ODS RTF statement   152-153 
ODS SELECT statement   147 
ODS TRACE statement   146-147 
OL option in REPORT procedure   138-139 
one-to-many match merge   178-181 
one-to-one match merge   176-177 
one-way frequency table   120-121 
online documentation   284 
online help   284 
opening a table in Viewtable window   33 
OpenVMS 
        direct referencing of SAS data sets   70  
        INFILE statement   37  
        LIBNAME statement   68  
operators 
        arithmetic   76-77  
        comparison   82-83, 102-103  
        logical   82-83, 102-103  
option not recognized error in log   272-273 
options 
        comparison of types of options   186-187  
        data set   186-187  
        system   26-27  
OPTIONS procedure   26 
        OPTION= option   201  



Index     321

OPTIONS statement   26-27 
        macro debugging options   212-213  
Options window in SAS windowing 
environment   27 
OR operator   82-83, 102 
ORDER usage option   134-135 
ordering observations   104-105 
ORIENTATION= system option   27 
OS/390 
        comments   279  
        direct referencing of SAS data sets   70  
        INFILE statement   37  
        LIBNAME statement   68  
OTHER keyword FORMAT procedure   112 
out of disk space message   280-281 
out of memory message   280-281 
out of time, job runs   279 
OUT= option 
        FREQ procedure   120  
        IMPORT procedure   60-63  
        MEANS procedure   118-119  
        SORT procedure   104-105  
OUTFILE= option in EXPORT procedure 
        240-243  
outliers   216-217 
output   15, 18-19 
        centering   27  
        changing appearance of data in  
           89-91, 108-113  
        creating SAS data sets from   148-149  
        customizing with STYLE= option    
           144-145, 158-163  
        footnotes   100-101, 156-157  
        HTML   20-21, 150-151  
        labels   101  
        linesize or pagesize   27  
        PCL   154  
        PDF   154-155  
        PostScript   154  
        PRINTER   154  
        printing   18-19  
        RTF   152-153  
        saving   18-19  
        titles   100-101, 156-157  
Output Delivery System   20-21, 144-167 
OUTPUT destination   144, 148-149 
output object   145-149 

OUTPUT statement 
        DATA step   190-193  
        DO statement   192  
        multiple observations from one   192-193  
        MEANS procedure   118-119  
        writing multiple data sets   190-191  
Output window   12, 15, 18-19  
OUTREP= option in LIBNAME statement    
        248-249 
OUTTABLE= option   242-243 
OVERLAY option in REG procedure   224  

P
P keyword in REG procedure   224 
P90 keyword in TABULATE procedure   124 
P1 option in MEANS procedure   218 
P5 option in MEANS procedure   218 
P10 option in MEANS procedure   218 
P25 option in MEANS procedure   218 
P50 option in MEANS procedure   218 
P75 option in MEANS procedure   218 
P90 option 
        MEANS procedure   218 
        REPORT procedure   140 
P95 option in MEANS procedure   218 
P99 option in MEANS procedure   218 
packed decimal data 
        format   110-111  
        informat   44-45  
page breaks in print files   114-115 
PAGE option in REPORT procedure   138 
PAGE= option in ODS HTML statement 
        150-151  
PAGENO= system option   27 
PAGESIZE= system option   27 
_PAGE_ keyword in PUT statements   114-115 
pairwise t test   228 
parameter estimates   227 
PCL output   144, 154 
PCTN keyword 
        REPORT procedure   140 
        TABULATE procedure   124 
PCTSUM keyword 
        REPORT procedure   140 
        TABULATE procedure   124  
PDw.d format   110-111 



322      Index 

PDw.d informat   44-45 
PDF output   144, 154-155 
Pearson coefficient   220, 222-223 
percentages 
        calculating in DATA step   180-181 
        FREQ procedure   120-121  
        REPORT procedure   140 
        TABULATE procedure   124  
percentiles 
        MEANS procedure   218  
        REPORT procedure   140 
        TABULATE procedure   124  
        UNIVARIATE procedure   217  
PERCENTw. informat   44-45 
permanent SAS data sets   66-71 
        examples   103, 170-171, 184-185, 243 
PLCORR option in FREQ procedure   220 
PLOT option in UNIVARIATE procedure   216 
PLOT statement in REG procedure   224-227 
plots
        box plots   216  
        normal probability plots   216  
        regression statistics   224-227  
        stem-and-leaf plots   216  
pointers 
        INPUT statements   42-43, 46-49, 50-51  
        PUT statements   114-115, 244-245  
        #n line pointer   50-51, 244  
        +n column pointer   42-43  
        / line pointer   50-51, 114-115, 244 
        @’character’ column pointer   48-49 
        @n column pointer   46-47, 244-245  
polychoric correlation   220 
POSTIMAGE style attribute   166-167 
PostScript output   144, 154 
POSTTEXT style attribute   166-167 
precedence, mathematical rules   76 
predicted values in regression   224-227 
Preferences window   20-21 
PREIMAGE style attribute   166-167 
PRETEXT style attribute   166-167 
print formats   108-113 
        user-defined   112-113  
PRINT option in FILE statements   114-115 
PRINT procedure   106-107 
        BY and ID together   180-181  
        STYLE= option   158-159  

printed values, changing appearance   108-109 
PRINTER  
        output   144-145, 154-155  
        style template   145, 154-155  
printing  
        contents of Output window   18-19  
        contents of Results Viewer window   20-21  
PROBT option in MEANS procedure   218 
PROC ANOVA   228-231 
PROC CIMPORT   249 
PROC CONTENTS   72-73 
        for debugging programs   275  
PROC CORR   222-223 
PROC CPORT 236-237, 249 
PROC EXPORT    
         delimited files 240-241 
         PC files 242-243 
PROC FORMAT   112-113 
        with TABULATE procedure   128-129  
PROC FREQ   120-121, 220-221 
PROC IMPORT 
        delimited files   60-61  
        PC files   62-63  
PROC MEANS   116-119, 180-181, 218-219 
PROC OPTIONS   26 
        OPTION= option   201  
PROC PRINT   106-107 
        BY and ID together   180-181  
        STYLE= option   158-159  
PROC REG   224-227 
PROC REPORT   132-141 
        STYLE= option 160-161 
PROC SORT   104-105 
PROC SQL   302-305 
PROC statement   6-7, 100 
        DATA= option   100  
PROC step 
        common statements and options   100-101  
        definition   6-7  
PROC SUMMARY   118 
PROC TABULATE   122-131 
        CLASSLEV statement   162 
        STYLE= option   162-163  
PROC TRANSPOSE   194-195 
PROC UNIVARIATE   216-217 
procedures
        common statements and options   100-101  



Index     323

        definition   6-7  
Program Editor   12, 14-15 
        RECALL command   15  
        SUBMIT command   14  
programming languages  
        compared to SAS   298-301  
Properties window 25 
PS destination   144-145 
PUT function   266-267 
PUT statement 
        _ALL_ variable name list   268-269  
        debugging with   268-269  
        formats   108-111  
        _PAGE_ keyword   114-115  
        writing a raw data file   244-245  
        writing in SAS log   268-269  
        writing reports   114-115  

Q
Q1 option in MEANS procedure   218 
Q3 option in MEANS procedure   218 
QTR function   80-81, 90-91 
quantiles   216-218 
Query window   305 
QUIT command in DATA step debugger   271 
QUIT statement   6 
quotation marks 
        FOOTNOTE statements   100-101  
        in macros   202  
        reading delimited data with   58-61  
        TITLE statements   100-101  
        unmatched   278  

R
R-square 
        ANOVA procedure   230-231  
        REG procedure   226-227  
RANGE option in MEANS procedure   116, 218 
RBREAK statement in REPORT procedure    
        138-139 
reading data   30-31, 34-65 
        column style   40-41  
        comma-separated values   58-61  
        delimited data   58-61  

        internal   36 
        messy data   48-49  
        methods for getting into SAS   30-31 
        missing data at end of line   57  
        mixing input styles   46-47  
        multiple lines of data per observation   50-51  
        multiple observations per line of data   52-53  
        non-standard format   42-43  
        part of a data file   54-55, 253  
        skipping lines of raw data   50-51, 56  
        skipping over variables   40-41  
        space-delimited   38-39  
        SPSS system files   296-297 
        variable length records   57  
        variable length values   48-49  
reading SAS data sets 
        concatenating data sets   172-173  
        interleaving data sets   174-175  
        merging summary statistics   180-183  
        one-to-many match merge   178-181  
        one-to-one match merge   176-177  
        a single data set   170-171  
        stacking data sets   172-173  
        updating a master data set   184-185  
RECALL Program Editor command   15 
record length of raw data files   37 
REG procedure   224-227 
regression    224-227 
relative risk measures   220 
RELRISK option in FREQ procedure   220 
remote submit   11 
RENAME= data set option   186-187 
REPLACE option 
        IMPORT procedure   60-63  
        EXPORT procedure   240-243  
REPORT procedure   132-141 
        STYLE= option   160-161 
reports 
        controlling style of   144-145, 158-163  
        PRINT procedure   106-113  
        REPORT procedure   132-141 
        TABULATE procedure   122-131 
        writing custom   114-115  
results 
        location   12-13, 15-21  
        wrong results, no error message   268-269  
Results window   12, 15, 18-21 



324      Index 

Results Viewer window   20-21 
RETAIN statement   92-93 
RIGHTMARGIN= system option   27 
risk ratios   220 
ROUND function   80-81 
rows of data 
        definition   4  
        Viewtable window   32-33  
ROW=FLOAT option in TABULATE procedure 
        128 
RTF  
        output   144-145, 152-153  
        style template   145, 152-153  
RULE, invalid data message   262-263 
RUN statement   6-7 
        CALL SYMPUT   210-211  
        missing   279  
running SAS programs 
        methods   10-11  
        SAS windowing environment   14-15  

S
SAS/ACCESS   31, 34-35, 62-63, 288 
SAS automatic variables 
        _ERROR_   196  
        FIRST.byvariable   196-197  
        LAST.byvariable   196-197  
        macro   208-209  
        _N_   196-197  
SAS Com magazine   285 
SAS/CONNECT   11, 236-237, 249, 289 
SAS data library   22-25, 66-71 
SAS data sets 
        changing observations to variables   194-195  
        combining a grand total with data   182-183  
        combining one observation with many  
          182-183  
        compressing   281  
        concatenating   172-173  
        contents of   25, 72-73 
        creating from procedure output   148-149  
        definition   4  
        interleaving data sets   174-175  
        inverting, TRANSPOSE procedure   194-195  
        merging, one-to-many   178-181  
        merging, one-to-one   176-177  

        merging summary statistics   180-183  
        modifying a single data set   170-171  
        names   5  
        options   186-187  
        permanent   66-71  
        permanent, examples   103, 170-171, 184-185, 
           243  
        printing   106-107  
        reading a single data set   170-171  
        saving   66-71  
        saving summary statistics to   118-119,  
           148-149  
        selecting observations during a merge  
          188-189  
        size   5  
        sorting   104-105  
        stacking data sets   172-173  
        subsetting IF statement   86-87  
        subsetting WHERE statement   102-103,  
           306-307  
        temporary versus permanent   66-67  
        updating a master data set   184-185  
        Viewtable window   24-25, 32-33  
        WORK library   22, 66-67  
        writing multiple data sets   190-191  
SAS dates   88-91 
        automatic macro variables   208-209  
        constants   88-89  
        converting dates   80-81, 88-91  
        definition of a SAS date   88  
        formats, table of   90-91, 110-111  
        functions, table of   80-81, 90-91  
        informats, table of   44-45, 90-91  
        Julian dates   90-91  
        printing current date on output   27  
        reading raw data with   42-43  
        setting default century   88  
        today’s date   80-81, 88-91  
SAS Enterprise Guide   10, 30, 252 
SAS Explorer   22-25 
SAS/FSP   30, 289 
SAS functions  
        dates   88-91  
        INPUT function   267  
        PUT function   267  
        table   80-81  
        use   78-79  



Index     325

SAS/INSIGHT   233 
SAS Institute   x 
        technical support   286-287  
        Web site   285  
SAS-L   285 
SAS/LAB   233 
SAS language  
        compared to programming language  
          298-301  
        compared to SPSS   291-297  
        compared to SQL   302-307  
        rules   2-3  
SAS Learning Edition   x, 286 
SAS listing   15, 18-19 
SAS log   16-17 
        errors, warnings, and notes   254-255  
        notes when reading raw data   37  
        notes when writing raw data files   245  
        writing in log with PUT statements  
          268-269  
SAS macro processor   200-201 
SAS, modes of running   10-11 
SAS names, rules for   5 
SAS Online Documentation   284 
SAS Online Tutor   284, 290 
SAS product descriptions   288-290 
SAS programs 
        capitalization   xiii, 5  
        comments   3  
        compared to programming language  
          298-301  
        compared to SQL   302-307  
        compared to SPSS   291-297  
        data driven   210-211  
        debugging   252-281  
        definition   2  
        documenting   3  
        finding missing semicolons   256-257  
        fixing   254-255  
        indention   xiii, 3  
        major parts   6-7  
        recalling in Program Editor   15  
        stops in middle of job   278-279  
        submitting   10-11, 14-15  
        testing   252-253, 255  
SAS software, licensing   x 
SAS stops in middle of job   278-279 

SAS user groups   285 
SAS windowing environment   10-25 
        command bar   13  
        editor   12, 14-15  
        executing programs from   14-15  
        Options window   27  
        Output window   12, 15, 18-19  
        RECALL command   15  
        running programs   14-15  
        saving files   18-19  
        SUBMIT command   14-15  
SASDATE option in ODS RTF statement   152 
SASHELP library   22-23 
SASUSER library   22-23 
saving  
        contents of Output window   18-19  
        contents of Results Viewer window   20-21  
saving SAS data sets   66-71 
        in the Viewtable window   33  
scatter plots, regression   224-227 
SCHEFFE option in ANOVA procedure 
        228-231  
Scheffe’s multiple-comparisons   228-231 
scientific notation 
        format for writing   110-111  
        reading data with   40, 42  
SELECT statement in SQL procedure   302-305 
selecting observations 
        DELETE statements   86-87  
        IF statements   86-87  
        IN= data set option   188-189  
        INPUT statements   54-55  
        WHERE statement   102-103, 306-307  
selecting output objects   147 
semicolon   2 
        missing   256-257  
sequential files   36 
SERROR system option   212-213 
SET command in DATA step debugger   271 
SET statement 
        BY statement   174-175  
        combining grand total with data   182-183  
        combining one observation with many  
          182-183  
        concatenating data sets   172-173  
        interleaving data sets   174-175  
        modifying single data set   170-171  



326      Index 

        multiple SET statements   182-183  
        reading single data set   170-171  
        stacking data sets   172-173  
sharing data with other software   30-31 
SHEET= statement in the IMPORT procedure   62 
SHORTFILEEXT option in LIBNAME statement 
        249 
skewness
        MEANS procedure   218  
        UNIVARIATE procedure   217  
SKEWNESS option in MEANS procedure   218 
SKIP option in REPORT procedure   138-139 
skipping over variables at input   40-41 
Somer’s D   220 
SORT procedure   104-105 
Source window 
        DATA step debugger   270-271  
space-delimited raw data 
        reading    34-35, 60-61  
        writing    238-241  
Spearman coefficient   220, 222 
SPEARMAN option in CORR procedure   222 
SPSS compared to SAS   291-297 
        data engine   31, 296-297  
        reading SPSS system files   296-297  
SQL compared to SAS   302-307 
SQL procedure   302-305 
SQL Query window   305 
stacking SAS data sets   172-173 
standard deviation 
        MEANS procedure   116-117, 218  
        REPORT procedure   140 
        TABULATE procedure   124  
        UNIVARIATE procedure   216-217  
standard error 
        MEANS procedure   218  
        REG procedure   227  
statement not valid error in log   272-273 
statement options  
        compared to data set options   186-187  
statistics 
        Analyst application   233  
        analysis of variance   228-231  
        categorical data   220-221  
        correlations   222-223  
        descriptive   116-141, 216-219 
        GUI interface to   233  

        multiple comparisons   228-231  
        output data set, MEANS procedure  
          118-119  
        pairwise t test   228  
        regression   224-227  
STD keyword in REPORT procedure   140 
STDDEV option 
        MEANS procedure   116, 218 
        TABULATE procedure   124 
STDERR option in MEANS procedure   218 
stem-and-leaf plots   216 
STEP command in DATA step debugger   271 
STOP statement   6, 211 
strings, character   4, 76-77 
Stuart’s tau-c   220 
student’s t   218 
style, selecting in Preferences window   20 
style attributes 
        PRINT procedure   158-159  
        REPORT procedure   160-161 
        TABULATE procedure   162-163  
        table of   166-167  
style templates   144-145 
STYLE= option  
        ODS HTML statement   150-151  
        ODS PCL statement   154  
        ODS PDF statement   154-155  
        ODS PRINTER statement   154 
        ODS PS statement   154 
        ODS RTF statement   152-153  
        PRINT procedure   158-159  
        REPORT procedure   160-161 
        TABULATE procedure   162-163  
        traffic-lighting   164-165  
        user-defined formats   164-165  
SUBMIT SAS windowing environment  
        command   14-15  
submitting SAS programs 
        methods   10-11  
        SAS windowing environment   14-15  
subsetting observations 
        DELETE statements   86-87  
        IF statements   86-87  
        IN= data set option   188-189  
        INPUT statements   54-55  
        saving memory and disk space   281  
        WHERE statement   102-103, 306-307  



Index     327

SUBSTR function   80-81 
subtotals 
        PRINT procedure   106-107 
        REPORT procedure  138-139 
SUGI   285 
SUM function   80-81, 265 
SUM keyword  
        REPORT procedure   140 
        TABULATE procedure   124 
sum of squares 
        ANOVA procedure   230-231  
        MEANS procedure   218  
        REG procedure   226  
SUM option in MEANS procedure   116, 218 
SUM statement in PRINT procedure   106-107 
sum statements, DATA step   92-93 
SUMMARIZE option in REPORT procedure    
        138-139 
SUMMARY procedure   118 
summary statistics 
        MEANS procedure   116-117, 218-219  
        merging with original data   180-183  
        saving in SAS data set   118-119  
        REPORT procedure   132-141 
        TABULATE procedure   122-125  
        UNIVARIATE procedure   216-217  
SUMMARY location in STYLE= option   160 
sums 
        across observations   92-93, 106-107, 116,  
            136-137 
        across variables   76-77, 80-81, 265  
        combining with data   180-183  
        REPORT procedure   132-141 
        SUM function   80-81, 265  
        SUM keyword in TABULATE procedure  
          124  
        SUM option in MEANS procedure  
          116, 218  
        sum statement in DATA step   92-93  
        SUM statement in PRINT procedure  
          106-107  
SUMWGT option in MEANS procedure   218 
SYMBOLGEN system option   212-213 
SYMPUT, CALL   210-211 
syntax of SAS programs   2 
syntax, checking   255 
syntax-sensitive editor   12, 253 

&SYSDATE macro variable   208-209 
&SYSDAY macro variable   208-209 
system options   26-27 
        BOTTOMMARGIN=   27 
        CENTER/NOCENTER   27  
        compared to data set options   186-187  
        DATASTMTCHK=   257  
        DATE/NODATE   27  
        LEFTMARGIN=   27 
        LINESIZE=   27  
        MACRO   201  
        MERROR   212-213  
        MLOGIC   212-213  
        MPRINT   212-213  
        MSGLEVEL=   248-249 
        NOXSYNC   65 
        NOXWAIT   65 
        NUMBER/NONUMBER   27  
        ORIENTATION=   27 
        PAGENO=   27  
        PAGESIZE=   27  
        RIGHTMARGIN=   27 
        SERROR   212-213  
        SYMBOLGEN   212-213  
        TOPMARGIN=   27 
        VALIDVARNAMES=   5  
        YEARCUTOFF=   27, 88  

T
T option 
        ANOVA procedure   228  
        MEANS procedure   218  
t tests 
        MEANS procedure   218  
        pairwise with ANOVA procedure   228  
TAB value in the DBMS= option 
        EXPORT procedure   240  
        IMPORT procedure   60  
tab-delimited data 
        reading   34-35, 58-61  
        writing   238-241  
Table Editor   32 
TABLE statement in TABULATE procedure  
        122-131  
        STYLE= option   162-163  
table templates   144-145 



328      Index 

TABLES statement in FREQ procedure 
        120-121, 220-221  
tables of data 
        definition   4  
        Viewtable window   32-33  
TABULATE procedure   122-131 
        CLASSLEV statement   162  
        STYLE= option   162-163  
technical support, SAS   286-287 
templates   144-145 
temporary SAS data sets   66-67 
text files   36 
THEN keyword   82-85 
time data 
        formats   110-111  
        informats   44-45  
TIMEw. informat   44-45 
TIMEw.d format   110-111 
TITLE statement   100-101, 156-157 
title, default   39 
TODAY function   80-81, 88-91 
toolbar in SAS windowing environment   13 
TOPMARGIN= system option   27 
totals 
        across observations   92-93, 106-107, 116  
        across variables   76-77, 80-81, 265  
        combining with data   180-183  
        controlling style in PRINT procedure  
          158-159  
        REPORT procedure   132-141 
        SUM function   80-81, 265  
        SUM keyword in TABULATE procedure  
          124  
        SUM option in MEANS procedure  
          116, 218  
        sum statement in DATA step   92-93  
        SUM statement in PRINT procedure  
          106-107  
TOTAL location in STYLE= option   158-159 
tracing output objects   146-147 
tracking observations  
        IN= data set option   188-189  
traffic-lighting   164-165 
trailing @   54-55, 244 
training from SAS   285 
transaction-oriented data, definition   184-185 
TRANSLATE function   80-81 

transport files   249 
TRANSPOSE procedure   194-195 
TREND option in FREQ procedure   220 
TRIM function   80-81 
truncation of character data   276-277 
TRUNCOVER option on INFILE statement 
        57, 259  
TUKEY option in ANOVA procedure   228 
Tukey’s studentized range test   228 
two-way frequency table   120-121, 220-221 
type of variable   4, 73 
_TYPE_ variable, MEANS procedure   118-119 

U
UCLM option in MEANS procedure   218 
UL option in REPORT procedure   138 
uninitialized variables   274-275 
UNIVARIATE procedure   216-217 
UNIX
        direct referencing of SAS data sets   70  
        INFILE statement   37  
        LIBNAME statement   68  
UPCASE function   80-81 
UPDATE statement   184-185 
URL style attribute   166-167 
usage options in REPORT procedure   134-135 
user groups   285 
user-defined formats   112-113 
        traffic-lighting   164-165  
        with TABULATE procedure   128-129  
USS option in MEANS procedure   218 

V
VALIDVARNAMES= system option   5 
VALUE statement FORMAT procedure 
        112-113  
VAR option in MEANS procedure   218 
VAR statement 
        CORR procedure   222-223  
        MEANS procedure   116-117, 218-219  
        PRINT procedure   106-107  
        STYLE= option in PRINT procedure  
          158-159  
        STYLE = option in TABULATE procedure  
          162-163  



Index     329

        TABULATE procedure   124-131  
        TRANSPOSE procedure   194-195  
        UNIVARIATE procedure   216  
variable length records, reading   57 
variable length values, reading   48-49 
variable name lists 
        _ALL_   96-97, 268-269  
        _CHARACTER_   96-97  
        name ranges   96-97  
        numbered ranges   96-97  
        _NUMERIC_   96-97  
variable not found error in log   274-275 
variable uninitialized note in log   274-275 
variables 
        arrays   94-95  
        automatic   196-197  
        automatic macro   208-209  
        changing to observations   194-195  
        creating a grouping variable   84-85  
        creating with assignment statements   76-77  
        definition   4  
        dropping   186-187  
        keeping   186-187  
        labels   72-73, 101  
        length   72-73, 276-277, 280-281  
        lists   96-97  
        means   116-117  
        names   5  
        printing   106-107  
        renaming   186-187  
        retaining values between observations  
          92-93  
        skipping when reading raw data   40  
        type   4, 73  
        uninitialized   274-275  
variance with MEANS procedure   218 
views with SQL procedure   302-303 
Viewtable window   24-25, 32-33 
VMS
        direct referencing of SAS data sets   70  
        INFILE statement   37  
        LIBNAME statement    68  

W
$w. format   110-111 
$w. informat   44-45 
w.d format   110-111 

w.d informat   44-45 
warnings in SAS log   254 
Web, creating files for   20-21, 150-151 
Web logs, reading   48-49 
Web site, SAS   285-287 
WEEKDATEw. format   90-91, 110-111 
WHERE statement 
        compared to subsetting IF   306-307  
        DATA steps   306-307  
        procedures   102-103, 306-307  
windowing environment, SAS   12-25 
Windows operating environment 
        direct referencing of SAS data sets   70  
        INFILE statement   37  
        LIBNAME statement   68  
WITH statement in CORR procedure   222-223 
Wizard 
        Export   238-239  
        Import   34-35  
WORDDATEw. format   90-91, 110-111 
WORK library   22-23, 66-67 
writing data   236-247 
        delimited   238-241, 244-247 
        methods  236-237  
        PC files   238-239, 242-243 
        raw data   238-241, 244-247 
writing SAS data sets 
        DATA step   6-7  
        multiple data sets   190-191  
        permanent data sets   66-71  

X
X statement   65 
XML documents   236-237, 249 
XML output    144 
XPORT engine   236-237, 249 

Y
YEARCUTOFF= system option   27, 88 

Z
z/OS 
        direct referencing of SAS data sets   70 
        INFILE statement   37 
        LIBNAME statement   68 



330      Index 

Special Characters 
! comparison operator   83, 102 
#n line pointer   50-51, 244 
& comparison operator   83, 102 
& macro variable prefix   200, 206-207 
comparison operator   83, 102 
*   ;  comments   3 
+n column pointer   42-43 
/ line pointer   50-51, 244 
/*  */ comments   3 
        in OS/390   279  
: colon modifier   48-49 
; semicolon   2 
        missing   256-257  
% macro prefix   200 
< comparison operator   82-83, 102 
<= comparison operator   82, 102 
= comparison operator   82-83, 102-103 
> comparison operator   82-83, 102 
>= comparison operator   82, 102 
@’character’ column pointer   48-49 
@ line-hold specifier   54-55, 244 
        compared to @@   55  
@@ line-hold specifier   52-53 
        compared to @   55  
@n column pointer   46-47, 244-245 
^= comparison operator   82, 102 
| comparison operator   83, 102 
|| concatenation operator   81 
~= comparison operator   82, 102 
¬= comparison operator   82, 102  



Call your local SAS office to order these books
from Books by Users Press

Advanced Log-Linear Models Using SAS®

by Daniel Zelterman  . . . . . . . . . . . . . .Order No. A57496

Annotate: Simply the Basics
by Art Carpenter  . . . . . . . . . . . . . . . . .Order No. A57320

Applied Multivariate Statistics with SAS® Software,
Second Edition
by Ravindra Khattree
and Dayanand N. Naik  . . . . . . . . . . . .Order No. A56903

Applied Statistics and the SAS ® Programming
Language, Fourth Edition
by Ronald P. Cody 
and Jeffrey K. Smith  . . . . . . . . . . . . .Order No. A55984

An Array of Challenges — Test Your SAS ® Skills
by Robert Virgile  . . . . . . . . . . . . . . . .Order No. A55625

Beyond the Obvious with SAS ® Screen Control
Language
by Don Stanley  . . . . . . . . . . . . . . . . . .Order No. A55073

Carpenter’s Complete Guide to the SAS® Macro
Language
by Art Carpenter  . . . . . . . . . . . . . . . . .Order No. A56100

The Cartoon Guide to Statistics 
by Larry Gonick 
and Woollcott Smith  . . . . . . . . . . . . .Order No. A5515

Categorical Data Analysis Using the SAS ® System,
Second Edition
by Maura E. Stokes, Charles S. Davis, 
and Gary G. Koch  . . . . . . . . . . . . . . . .Order No. A57998

Cody’s Data Cleaning Techniques Using SAS ® Software
by Ron Cody  . . . . . . . . . . . . . . . . . . . .Order No. A57198

Common Statistical Methods for Clinical Research
with SAS ® Examples, Second Edition
by Glenn A. Walker  . . . . . . . . . . . . . .Order No. A58086

Concepts and Case Studies in Data Management
by William S. Calvert
and J. Meimei Ma  . . . . . . . . . . . . . . . .Order No. A55220

Debugging SAS ® Programs: A Handbook of Tools 
and Techniques
by Michele M. Burlew  . . . . . . . . . . . . .Order No. A57743

Efficiency: Improving the Performance of Your SAS ®

Applications
by Robert Virgile  . . . . . . . . . . . . . . . .Order No. A55960

A Handbook of Statistical Analyses Using SAS®,
Second Edition
by B.S. Everitt
and G. Der  . . . . . . . . . . . . . . . . . . . . . .Order No. A58679

Health Care Data and the SAS® System
by Marge Scerbo, Craig Dickstein, 
and Alan Wilson  . . . . . . . . . . . . . . . . .Order No. A57638

The How-To Book for SAS/GRAPH® Software
by Thomas Miron  . . . . . . . . . . . . . . .Order No. A55203

In the Know... SAS® Tips and Techniques From
Around the Globe
by Phil Mason  . . . . . . . . . . . . . . . . . .Order No. A55513

support.sas.com/pubs



Integrating Results through Meta-Analytic Review Using
SAS® Software
by Morgan C. Wang
and Brad J. Bushman  . . . . . . . . . . . .Order No. A55810

Learning SAS® in the Computer Lab, Second Edition
by Rebecca J. Elliott  . . . . . . . . . . . . .Order No. A57739

The Little SAS® Book: A Primer
by Lora D. Delwiche 
and Susan J. Slaughter  . . . . . . . . . .Order No. A55200

The Little SAS® Book: A Primer, Second Edition
by Lora D. Delwiche 
and Susan J. Slaughter  . . . . . . . . . .Order No. A56649
(updated to include Version 7 features)

Logistic Regression Using the SAS® System:
Theory and Application
by Paul D. Allison  . . . . . . . . . . . . . . .Order No. A55770

Longitudinal Data and SAS®: A Programmer’s Guide
by Ron Cody  . . . . . . . . . . . . . . . . . . .Order No. A58176

Maps Made Easy Using SAS®

by Mike Zdeb  . . . . . . . . . . . . . . . . . . .Order No. A57495

Models for Discrete Date 
by Daniel Zelterman  . . . . . . . . . . . . .Order No. A57521

Multiple Comparisons and Multiple Tests Using SAS®

Text and Workbook Set
(books in this set also sold separately)
by Peter H. Westfall, Randall D. Tobias,
Dror Rom, Russell D. Wolfinger
and Yosef Hochberg . . . . . . . . . . . . . Order No. A55770

Multiple-Plot Displays: Simplified with Macros
by Perry Watts . . . . . . . . . . . . . . . . . . Order No. A58314

Multivariate Data Reduction and Discrimination with
SAS ® Software
by Ravindra Khattree,
and Dayanand N. Naik  . . . . . . . . . . .Order No. A56902

The Next Step: Integrating the Software Life Cycle with
SAS ® Programming
by Paul Gill . . . . . . . . . . . . . . . . . . . . Order No. A55697

Output Delivery System: The Basics
by Lauren E. Haworth . . . . . . . . . . . . Order No. A58087

Painless Windows: A Handbook for SAS® Users
by Jodie Gilmore . . . . . . . . . . . . . . . . Order No. A55769
(for Windows NT and Windows 95)

Painless Windows: A Handbook for SAS® Users,
Second Edition
by Jodie Gilmore . . . . . . . . . . . . . . . . Order No. A56647
(updated to include Version 7 features)

PROC TABULATE by Example
by Lauren E. Haworth . . . . . . . . . . . . Order No. A56514

Professional SAS ® Programmer’s Pocket Reference,
Fourth Edition
by Rick Aster . . . . . . . . . . . . . . . . . . . Order No. A58128

Professional SAS ® Programmer’s Pocket Reference,
Second Edition
by Rick Aster . . . . . . . . . . . . . . . . . . . Order No. A56646

Professional SAS ® Programming Shortcuts
by Rick Aster . . . . . . . . . . . . . . . . . . . Order No. A59353

Programming Techniques for Object-Based Statistical
Analysis with SAS® Software
by Tanya Kolosova
and Samuel Berestizhevsky . . . . . . . Order No. A55869

Quick Results with SAS/GRAPH® Software
by Arthur L. Carpenter 
and Charles E. Shipp . . . . . . . . . . . . Order No. A55127

Quick Results with the Output Delivery System

by Sunil Gupta . . . . . . . . . . . . . . . . . . .Order No. A58458

Quick Start to Data Analysis with SAS ®

by Frank C. Dilorio
and Kenneth A. Hardy. . . . . . . . . . . . Order No. A55550

Reading External Data Files Using SAS®: Examples
Handbook
by Michele M. Burlew . . . . . . . . . . . . Order No. A58369

support.sas.com/pubs



Regression and ANOVA: An Integrated Approach
Using SAS ® Software
by Keith E. Muller 
and Bethel A. Fetterman . . . . . . . . . . Order No. A57559

Reporting from the Field: SAS ® Software Experts
Present Real-World Report-Writing 
Applications  . . . . . . . . . . . . . . . . . . .Order No. A55135

SAS ®Applications Programming: A Gentle Introduction
by Frank C. Dilorio  . . . . . . . . . . . . . .Order No. A56193

SAS ® for Forecasting Time Series, Second Edition
by John C. Brocklebank
and David A. Dickey  . . . . . . . . . . . . .Order No. A57275

SAS ® for Linear Models, Fourth Edition
by Ramon C. Littell, Walter W. Stroup.
and Rudolf Freund  . . . . . . . . . . . . . .Order No. A56655

SAS® for Monte Carlo Studies: A Guide for
Quantitative Researchers
by Xitao Fan, Ákos Felsovályi, Stephen A. Sivo,
and Sean C. Keenan  . . . . . . . . . . . . .Order No. A57323

SAS ® Macro Programming Made Easy
by Michele M. Burlew  . . . . . . . . . . . .Order No. A56516

SAS ® Programming by Example
by Ron Cody
and Ray Pass  . . . . . . . . . . . . . . . . . . .Order No. A55126

SAS ® Programming for Researchers and 
Social Scientists, Second Edition
by Paul E. Spector . . . . . . . . . . . . . . .Order No. A58784

SAS ® Software Roadmaps: Your Guide to Discovering
the SAS ® System
by Laurie Burch 
and SherriJoyce King  . . . . . . . . . . . .Order No. A56195

SAS ® Software Solutions: Basic Data Processing
by Thomas Miron  . . . . . . . . . . . . . . .Order No. A56196

SAS® Survival Analysis Techniques for Medical
Research, Second Edition
by Alan B. Cantor  . . . . . . . . . . . . . . .Order No. A58416

SAS ® System for Elementary Statistical Analysis,
Second Edition
by Sandra D. Schlotzhauer
and Ramon C. Littell  . . . . . . . . . . . . .Order No. A55172

SAS ® System for Forecasting Time Series, 
1986 Edition
by John C. Brocklebank
and David A. Dickey  . . . . . . . . . . . . .Order No. A5612

SAS ® System for Mixed Models
by Ramon C. Littell, George A. Milliken, Walter W.
Stroup, and Russell D. Wolfinger  . .Order No. A55235

SAS ® System for Regression, Second Edition
by Rudolf J. Freund 
and Ramon C. Littell  . . . . . . . . . . . . .Order No. A56141

SAS ® System for Statistical Graphics, First Edition
by Michael Friendly  . . . . . . . . . . . . . .Order No. A56143

The SAS ® Workbook and Solutions Set
(books in this set also sold separately)
by Ron Cody  . . . . . . . . . . . . . . . . . . .Order No. A55594

Selecting Statistical Techniques for Social Science
Data: A Guide for SAS® Users
by Frank M. Andrews, Laura Klem, Patrick M.
O’Malley, Willard L. Rodgers, Kathleen B. Welch,
and Terrence N. Davidson  . . . . . . . .Order No. A55854

Solutions for Your GUI Applications Development
Using SAS/AF® FRAME Technology
by Don Stanley  . . . . . . . . . . . . . . . . .Order No. A55811

Statistical Quality Control Using the SAS ® System
by Dennis W. King . . . . . . . . . . . . . . .Order No. A55232

A Step-by-Step Approach to Using the SAS ® System
for Factor Analysis and Structural Equation Modeling
by Larry Hatcher  . . . . . . . . . . . . . . . .Order No. A55129

A Step-by-Step Approach to Using the SAS ® System
for Univariate and Multivariate Statistics
by Larry Hatcher
and Edward Stepanski  . . . . . . . . . . .Order No. A55072

support.sas.com/pubs

ý



Step-by-Step Basic Statistics Using SAS®: Student
Guide and Exercises
(books in this set also sold separately)
by Larry Hatcher . . . . . . . . . . . . . . . . .Order No. A57541

Strategic Data Warehousing Principles Using
SAS ® Software
by Peter R. Welbrock  . . . . . . . . . . . .Order No. A56278

Survival Analysis Using the SAS ® System:
A Practical Guide
by Paul D. Allison  . . . . . . . . . . . . . . .Order No. A55233

Table-Driven Strategies for Rapid SAS ® Applications
Development

by Tanya Kolosova
and Samuel Berestizhevsky  . . . . . . .Order No. A55198

Tuning SAS ® Applications in the MVS Environment
by Michael A. Raithel  . . . . . . . . . . . .Order No. A55231

Univariate and Multivariate General Linear Models:
Theory and Applications Using SAS ® Software
by Neil H. Timm
and Tammy A. Mieczkowski  . . . . . . .Order No. A55809

Using SAS ® in Financial Research
by Ekkehart Boehmer, John Paul Broussard,
and Juha-Pekka Kallunki  . . . . . . . . .Order No. A57601

Using the SAS ® Windowing Environment:
A Quike Tutorial
by Larry Hatcher  . . . . . . . . . . . . . . . .Order No. A57201

Visualizing Categorical Data
by Michael Friendly  . . . . . . . . . . . . . .Order No. A56571

Working with the SAS ® System
by Erik W. Tilanus  . . . . . . . . . . . . . . .Order No. A55190

Your Guide to Survey Research Using the 
SAS ® System
by Archer Gravely  . . . . . . . . . . . . . . .Order No. A55688

support.sas.com/pubs

JMP® Books

Basic Business Statistics: A Casebook
by Dean P. Foster, Robert A. Stine,
and Richard P. Waterman . . . . . . . . .Order No. A56813

Business Analysis Using Regression: A Casebook
by Dean P. Foster, Robert A. Stine,
and Richard P. Waterman . . . . . . . . .Order No. A56818

JMP® Start Statistics, Second Edition
by John Sall, Ann Lehman,
and Lee Creighton . . . . . . . . . . . . . . .Order No. A58166

Regression Using JMP®

by Rudolf J. Freund, Ramon C. Littell, 
and Lee Creighton . . . . . . . . . . . . . . .Order No. A58789


	000.pdf
	000a.pdf
	000b.pdf
	000c.pdf
	000d.pdf
	000e.pdf
	000f.pdf
	000g.pdf
	000h.pdf
	000i.pdf
	000j.pdf
	000k.pdf
	000l.pdf
	000m.pdf
	000n.pdf
	000o.pdf
	000p.pdf
	000q.pdf
	000r.pdf
	000s.pdf
	000t.pdf
	000u.pdf
	000v.pdf
	000w.pdf
	000x.pdf
	000y.pdf
	000z.pdf

	001-100.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf

	101-200.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf

	201-334.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf
	289.pdf
	290.pdf
	291.pdf
	292.pdf
	293.pdf
	294.pdf
	295.pdf
	296.pdf
	297.pdf
	298.pdf
	299.pdf
	300.pdf
	301.pdf
	302.pdf
	303.pdf
	304.pdf
	305.pdf
	306.pdf
	307.pdf
	308.pdf
	309.pdf
	310.pdf
	311.pdf
	312.pdf
	313.pdf
	314.pdf
	315.pdf
	316.pdf
	317.pdf
	318.pdf
	319.pdf
	320.pdf
	321.pdf
	322.pdf
	323.pdf
	324.pdf
	325.pdf
	326.pdf
	327.pdf
	328.pdf
	329.pdf
	330.pdf
	331.pdf
	332.pdf
	333.pdf
	334.pdf




