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Introduction 
This is an introduction into SPSS and data analyses. You will learn some basic functions for 

data exploration, data editing and simple inferential statistics. Thereafter an introduction to 

regression analyses and survival analyses will be presented. Each chapter starts with a 

combination between theoretical explanation and practical instructions, which you can 

perform simultaneously. We suggest to read this carefully and perform the accompanied 

syntax examples. At the end of each chapter you will find assignments on each topic, which 

you should be able to make with the information from the chapters.  Syntax files with the 

correct solutions will be provided and don’t hesitate to ask for help from the tutors. 

 

Italic text indicate where  you can find the function in the SPSS menu, e.g.: 

Analyze > Descriptive Statistics > Descriptives 

  

 Capitals indicate SPSS syntax statements, e.g: 

 RENAME 

 

 In boxes you can find background information on statistical formulas, e.g.: 

 

 ln(𝑜𝑑𝑑𝑠) = 𝛽0 + 𝛽1𝑋1 +  𝛽2𝑋2 +  𝛽3𝑋3 + ⋯ +  𝛽𝑘𝑋𝑘 
 

 If you dislike statistical formulas you can skip the information in the box, because it 

will be described without formulas in the text as well. 

  

Chapters or paragraphs with an asterisk (*) indicate advanced topics in data-analysis. 

 

 

Loes Hollestein 

Marlies Wakkee 
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Chapter 1 Exploring SPSS 
 

Dataset: SCC 

Patients with a primary cutaneous invasive squamous cell carcinoma were registered. In this 

database you will find information about the patients age, sex, year of diagnosis and tumor 

characteristics, such as stage according to the tumor node metastasis (TNM), body site of the 

tumor according to the International Classification of Disease for Oncology (ICD-O). All 

SCC (both first and subsequent SCC) are included for the dataset. 

 

SPSS Screens 

SPSS has different screens in which you can work: 

Variable view and data view of the data editor, the Syntax Editor and the Output.  

 

Screen Function Files 

Data editor Data management and starting statistical 

procedures 

Variable view & Data view 

.sav 

Output Representation of outcomes of statistical 

procedures (tables and figures) 

.spo 

Syntax Editor Save and edit SPSS syntax or execute SPSS 

procedures by ‘running’ the syntax 

.sps 

 

Copy the data 

Make a copy of the dataset before you start working with your data in SPSS. Save the raw 

datafile and perform the data exploration, editing and analyses in a copy of the original 

datafile.  

1.1 Open a dataset  

 

1a. Import the data from excel 

File > Open > Data 

Select Excel (.xls) from the picklist, Select SCC  and click on open. 

Select the worksheet ‘SCC_2011’ from the picklist. The first row of the excel worksheet 

contains the variable names, which are copied automatically by SPSS. If correctly opened, 

close the dataset again. 
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1b. Open a SPSS datafile ‘SCC’ 

In this file are variable labels and values are already assigned. 

File > Open > Data 

 

1.2 Syntax 

During this practical you will also make a syntax. It is important to save the syntax, so that 

you can always look up which analyses you performed in the past.  To save the syntax in the 

syntax editor you should click on ‘Paste’ instead of ‘OK’ or copy the syntax from the output 

screen (Click on Copy with the right mouse button, Ctrl+C doesn’t work). 

Between an asterisk (*) and a dot (.) you can type notes.  

To run the syntax: select part of the syntax and click on the ‘Run selection’ button. 

 
2a. Open a new syntax file 

File > New > Syntax 

1.3 Unique patient identifier 

Mistakes can happen with the construction of a database. It is important to assign a unique 

number to each patient. In this way you can check if patients are entered multiple times into 

the database. This could be by mistake, but it could also be that a patient has multiple record 

in case of multiple tumors. A unique patient identifier can also be used to link a patient 

database to another database which contains information about the patients.  

 

3a. check for duplicate cases  

Use the patient number and year of diagnosis, because patients can have multiple tumors. 

Do not forget to save the syntax!  

 

 Data > Identify duplicate cases > Define matching cases by Patient and Year 
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In the output you can see that there are 2 duplicate cases. Go to data view and you can see the 

duplicate cases at the top of your dataset. Duplicate cases have the value 0 for the PrimaryLast 

variable. Use this variable to delete duplicate cases. Never delete them yourself, because you 

can make a mistake.  

 

3b. Delete duplicate cases safely. 

Data > Select Cases 

There are 5 options to select the cases: 

-All cases 

-Based on a satisfied condition 

-A random sample of all cases 

-Based on a range 

-Using a filter variable. 

 

There are three options for the output: 

- Filter out unselected cases (Recommended) 

- Copy selected cases to a new data sat 

- Delete unselected cases 

  

For this assignment: fill in If condition is satisfied PrimaryLast=1 and delete unselected cases.  

In most situations delete unselected cases is not recommended, because you cannot undo this 

action. It is better to use ‘filter out unselected cases’, because you can change the selected 

cases if you made a mistake.  

 

1.4 Data Type 

Variables can be numerical or categorical. Numerical data can be subdivided in to discrete 

variables, which are count data (e.g. like number of seizures) or continuous variable, which 

can be any value in a range (e.g. age). Categorical data can be subdivided in nominal 

variables. These categories have no order (e.g. blood type). Ordinal variables are ordered (e.g. 

disease severity as measured by TNM stage). 

In SPSS you can define the variables in Variable View by using data Type and Measure. For 

example, age can be numeric and Scale (any value from 0 to 100), age category can be 

numeric and ordinal (1=0-4 yrs, 2=5-9 yrs etc.) or age can be string and ordinal (‘young’, 

‘middle aged’, ‘old’). For a categorical variable you can enter a label for each value. See the 

example for sex on the next page.  

Renaming variables, labeling variables and values is not recorded in a syntax if you perform 

this actions in variable view. Use the RENAME, VARIABLE LABELS and VALUE 

LABELS statements in the syntax to save these changes. An example of these statements is 

shown in Chapter 1.6.  
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Always fill in the label and the values! This is necessary for your collegues to understand 

what is in the dataset or for yourself, because if you didn’t work with the data for a long 

period of time you do not remember the meaning of variables and values. 

1.5 Explore continuous data 

Before you start with data analyses, you explore the dataset. In this way you get a grasp of the 

distribution of the data, you can check the data for outliers, or you can check assumptions.  

 

1.5a. Explore the variable age. 

Analyze > Descriptive Statistics > Descriptives 

Obtain standard measures, like mean, standard deviation, median, interquartile range etc. 

 

Analyze > Descriptive Statistics > Explore 

More elaborate than descriptives. Obtain measures by category by transferring the category 

variable to Factor list. Obtain plots and test for normality (for explanation see below) 

 

1.5b. Test if age is normally distributed. 

In a linear regression analyses the outcome should be normally distributed. You can check 

this assumption graphically by plotting a histogram with a normal curve 

 

Graphical check 

Analyze > Descriptive Statistics  > Frequencies 

Transfer age to the ‘Variable(s)’ box. Go to Charts and click on histogram with normal curve 

In the Statistics menu of frequencies you can find handy statistics, like quartiles or percentiles 

 

Statistical test for normality and Quantile-Quantile (Q-Q) plots 

Analyze > Descriptive Statistics > Explore > Plots > Normality plots with tests 
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The normality assumption can be statistically tested using the Shapiro-Wilk test or visually 

inspected using a histogram and a Quantile-Quantile (Q-Q) plot. The Shapiro-Wilk test 

performs better than the Kolmogorov-Smirnov test to test for normality. The null hypothesis 

is: ‘the variable is normally distributed’. A p-value < 0.05, thus indicates violation of the 

normality assumption.  

The idea of a Q-Q plot is to calculate the expected value for each data point based on the 

normal distribution. The observed value is plotted against the expected normal distribution. If 

the datapoints are on the diagonal, this implies normality. Deviation from this straight line 

indicates that the normality assumption is violated.   

 

1.5c. Make a boxplot for age by sex. 

To display the spread of the data you can make a boxplot. 

Graphs > Legacy dialogs > Boxplot > Simple 

 
 

Fill in the continuous variable and by which variable you would like to group the cases at the 

category axis. You can label cases by their patientnumber. In this way it is easy to identify, 

which patient has a strange value for age. 
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1.6 Explore categorical data 

 

1.6a. Make a frequency table for stage. 

Analyze > Descriptive Statistics > Frequencies 

 

Display the frequencies for each value. You can also make a pie chart. You can check if the 

distribution among the stages is logical. Indeed, most SCC’s are diagnosed in stage I. You can 

also identify errors in the variables with this function. Stage 11 doesn’t exist. This is probably 

a stage 1 tumor, but you should always try to go back to the patient files to check this before 

you fill in a new value.  

 
 

Median 95% central range 
Interquartile 

range 
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1.6b. Discrete Missing values. 

Stage information is missing for 2 patients. This was entered into the database as the value 

999.  

 

Go to variable View. Go to the ‘Missing’ column on the stage row and check the box ‘No 

missing values’. Make a frequency table again:  

Now you can see, that SPSS doesn’t recognize the missing value. Go back to Missing and fill 

in ‘999’ in the ‘discrete missing values’ box. 

 
1.6c. Correct the stage values. 

Assuming that you checked the patient files, stage 11, should have been stage 1. To change 

the values, use the following syntax. In this way, you or your collegues can always retrieve 

what has been changed.  

 

 
 

To check if the changes were successful, sort the cases in descending order: 

 

Option 1: Data > Sort Cases 

Option 2: Go to data view. Click with the right mouse button on the stage heading and 

sort descending.  

 

1.6d. Make a Crosstab 

To check the stage distribution by sex, you can make a crosstab: 

Analyze > Descriptive Statistics > Crosstabs 

Fill in Stage as row and Sex as column variables. Go to ‘Statistics’ and tick the box for the 

Chi-square test. 
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Three cells contain less then 5 subjects. If you find less then 5 subjects in one cell you should 

perform the Fisher’s exact test, because the Chi-square test is not reliable with a low number 

of subjects in one of the cells. Go back to crosstabs and go to ‘Exact..’ to check the option 

‘exact’. Do not forget to limit the time (1 minute), because the calculation for a Fisher’s exact 

test can take a while. 

 

 
The p-value obtained by the Fisher’s exact test is 0.442. The null hypothesis for a chisquare 

test and the Fisher’s exact test is as follows: the proportion of subjects for each stage is equal 

in the two groups. We can conclude that the proportions are equal.  

Be aware when you interpret the result of a chi-square test with multiple groups. The null 

hypothesis is: the proportion of subjects for each category is equal in the three (or more) 

groups. So from a significant p-value for the chi-square test you can only conclude that the 

proportion is not equal, but you cannot conclude between which two groups there is a 

difference.  

1.7 Data editing 

Compute a new variable  
 

Laboratory values can be right skewed.  To normalize right skewed data you can log 

transform this variable.  

 

Transform > Compute variable 
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1.7a. Plot the lab values, log transform the lab values and make a new histogram: 

 

Graphs > Legacy Dialogs > Histogram 

 

Use Lab_value as variable. You can also tick the box ‘Display normal curve’. ‘You can also 

obtain a histogram by using the chart builder (explained in paragraph 3.1).  

 

Graphs > Chart Builder 

 

 
 

Log transformations are only effective for right skewed data. Age was not normally 

distributed, but a little left skewed. Log transformations make left skewed data even more left 

skewed.  

 

 

Right skewed (positively skewed) 

 

 

 

 

Left skewed (negatively skewed) 

The computation 

Fill in new 
variable name 

Fill in if the new variable 
should be created for 
only part of the cases 

Function groups 

Function
s 

Explanation of the function 
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1.7b.Repeat the syntax for age 

 

Recode 
Transform > Recode 

There are three options for recoding data, which you can find in the Transform menu 

-Recode into the same variables 

-Recode into different variables 

-Automatic recode 

 

I advise never to use Recode into the same variables, because you will lose your original data. 

Automatic recode recodes numerical and string variables into a new numerical variable. The 

value labels will be automatically displayed in ‘Values’ in variable view.  

You can choose you own new categories with ‘recode into different variables’. This is the 

recommended function for recoding variables.  

 

1.7c. Recode age in two new categories ( < 65 years and ≥ 65 yrs) 

Transform > Recode into different variables 

Transfer age at diagnosis to the ‘Numerical variable -> output variable’ box. Fill in the new 

variable name and click on ‘change. Go to ‘Old and New Values’.  
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Fill in the old values, the new value and click on add. Do not forget to label the new values in 

the variable view screen or use the following syntax for labelling: 

 

Sort data  
Data > Sort cases 

Patients can have multiple tumours, which were diagnosed in different years.  

 

1.7d. Sort cases by patient number and year of diagnosis: 

 

Rank cases 
 

1.7e. Make a new variable which indicates the sequence of the tumours 

 

Transform > Rank cases  

 

You would like to rank year of diagnosis by patient number 

 
 

 

1.7f. Rename the variable which was created by the Rank cases function of SPSS. 

Go to Variable view and rename the variable or use the following syntax: 

 
 

Sort patient number ascending to check the result for patient number 4. Patients with only 1 

tumor have only the value 1. Patient number 4 has 4 tumors and should have rank values 1, 2, 

3 and 4. It may be convenient to put the variables next to each other. 
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Select cases 
 

Data > Select cases  

 

1.7g. Select the first tumor of each patient. 

You can select the cases if the rank is equal to 1 and filter out unselected cases. 

 

 
 

Result is shown on the next page. 
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Result of the filter: 

 

 
 

Syntax of the filter: 

 
In the syntax you can see, that SPSS first computes a filter variable, subsequently labels the 

values and finally filters the cases by the filter variable. You can save this filter variable or 

you can create your own filter variable.  

 
Don’t forget to turn the filter off! 
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1.8 Export a data set 

Some analyses can only be done or can be easier performed in other statistical package like 

STATA, SAS or R. You can export a datafile in the correct format by using the Save As 

option the the File menu. For SAS use the long extension (*.sas7bdat). If the format for your 

package is not available in the picklist, save the data as a tab delimited file (*.dat) or a comma 

delimited file (*.csv). These datafiles are usually easy to import into other statistical packages.  
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Assignment 1.1 Data exploration 

 

Data: Skin cancer screening 

Patients at risk for skin cancer received a full body examination. A questionnaire was filled in 

by the patients to determine factors which increase skin cancer risk  

 

Open the dataset ‘Skin_cancer_screening’ and check which variables are included. 

 

1. ID is an unique patient identifier. Check for duplicate cases and delete possible duplicate 

case by using a syntax (i.e. don’t delete duplicate cases by hand). How many duplicated cases 

were there in the data? 

 

2. Compute age at the date of screening by using birth date. Use a function from the ‘Date 

Extraction’ function group. 

 

3. Sort cases by ascending age. 

 

4a. Many patients have missing values on their date of birth and as a consequence on age. 

Discrete missing values for age with a non-existing age value, for example 999. Do not 

choose 99 for missings, because patients can also be 99.  

4b. Compute 999 for missing values on age. Use the IF option and use a function from the 

‘Missing Values’ function group. 

 

5a. Explore the variable age. Make a boxplot for age and check for outliers. 

5b.Write down the casenumbers who have a strange value for age.  

 

6a.How many males and females participated in the screening? 

6b.Discrete missing values for sex and recalculate the frequency table 

 

7. How many females older than 40, but younger than 61 participated in the screening? 

Recode age to answer this question. 

 

8. How many patients were diagnosed with at least one melanoma? 
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Chapter 2 Simple Inferential Statistics 
 

Data: SCC 

The data used is this chapter is equal to the data in chapter 1, but in chapter 2 only the first 

SCC is included.  

 

The following figure is useful to determine which statistical test is needed to answer the 

research question: 

 

 
Figure 2.1: flowchart statistical tests 

 

In the previous chapter you have learned about the different types of numerical and 

categorical data. To use this figure you need to determine if you would like to compare the 

mean or the distribution in 1 group, between 2 groups or more than 2  groups. You also need 

to determine if data are paired (dependent) or unpaired (independent). Paired data means that 

the outcome variable is measured in the same subjects twice. For example, the blood pressure 

of a group of patients before and after the intervention. Unpaired data means that the outcome 

variable is measured in different groups of patients. For example: the blood pressure of group 

A (who received the intervention) and the blood pressure of group B (who received placebo).  

 

Statistical Test Location SPSS 

  

Numerical data  

Parametric tests  

One sample t-test Analyze > Compare means > One sample t-test 

Paired t-test Analyze > Compare means > Paired samples t-test 

Unpaired t-test Analyze > Compare means > Independent samples t-test 

One way ANOVA Analyze > Compare means > One way ANOVA 

  

Nonparametric tests  

Sign test Analyze > Nonparametric tests > 

Wilcoxon signed rank test  Analyze > Nonparametric tests > Related samples 

Wilcoxon rank sum test/ 

Mann-Whitney U test 

Analyze > Nonparametric tests > Independent samples 

Kruskal-Wallis test Analyze > Nonparametric tests > Independent samples 



22 

 

Statistical Test Location SPSS 

  

Categorical data  

Z-test Obtain value for p from Frequencies 

Sign test Obtain value for p from Frequencies 

McNemar’s test Analyze > Descriptive Statistics > Crosstabs > Statistics > McNemar 

Chisquare test Analyze > Descriptive Statistics > Crosstabs > Statistics > Chisquare 

Fisher’s exact test Analyze > Descriptive Statistics > Crosstabs > Exact > Exact 

Chis-squared trend test Analyze > Descriptive Statistics > Crosstabs > Statistics > Ordinal 

 

2.1 Student’s t-test 

 

A Student’s t-test is used to compare the means between two groups. For example, if you 

want to compare the mean height between men and women. The t refers to the t-distribution, 

which approximates a normal distribution with large sample sizes. There is a t-test for paired 

and for unpaired data.  

 

2.1a Research Question: is the age of the first tumor different between men and women? 

Step 1. Determine which statistical test you need to answer this question and define the null 

hypothesis (H0).  

 

H0: the distribution of age is equal between men and women.  

 

Step 2. Check the assumptions of the t-test: 

 

The assumptions of the t-test are: 

- Data is normally distributed  

- Variances are equal (separate test is not needed, this is incorporated in the output of the t-

test) 

 

You can check this by using frequencies or the Shapiro-Wilk test and Q-Q plots.  

 

Analyze > Descriptive Statistics > Frequencies 

Analyze > Descriptive Statistics > Explore > Plots > Normality plots with tests 

 

Age was not completely normally distributed, but based on the histogram age can be regarded 

as approximately normally distributed. If the sample size is large enough (ca. >30) then the 

central limit theorem holds, even if the variable is not completely normally distributed. For 

small sample sizes the Shapiro-Wilk test is recommended. 

 

Central limit theorem: 

),(
n

NX


  

Meaning of this  formula: 

The mean of a random variable ( X ) follows a normal distribution (N), with a mean value (µ), 

which is equal to the population mean with a standard deviation which is equal to the standard 

deviation of the population (σ) divided by the square root of the sample size (n).  

This approximation becomes better if your sample size (n) is larger.  
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Step 3. Perform the unpaired t-test. 

 

Analyze > Compare Means > Independent Samples t-test 

 

Age is the test variable and sex is the grouping variable. Define the values of the groups.   

 

 
 

 
 

Step 4. Interpretation of the output 

In the first table you can see the number of subjects included in the analyses as well as the 

mean, standard deviation (SD) and the standard error (SE).  

SD=√𝛿2=Square root of the variance (interpretation: variance in this sample) 

SE=
𝑆𝐷

√𝑁
=SD/Square root sample size (interpretation: variance of the mean if you would sample 

multiple times) 

 

First look at Levene’s test for equality of variances. The null hypothesis for this test is: The 

variances of both groups are equal. A non-significant result means that the variances are equal 
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and that you can use the output for equal variances assumed. The p-value in this analysis is 

0.026, so we should look at the results for equal variances NOT assumed. The mean 

difference is -3.377 years with a 95 % CI of -4.954 to -1.801. From the table with group 

statistics you can calculate the same mean difference. The value 0 is not in the confidence 

interval. 0 means no difference. Therefore you already know that the p-value is significant. 

The significance (2-tailed) is 0.000. A p-value cannot be zero. This means that the p-value < 

0.001. 

 

2.1b Is the age of the first tumor different between men and women for each stage? 

 

Perform the same t-test as for assignment 2.1a, but organise the output by stage.  

 

Data > Split File  

 

Check the box ‘Organize output by groups’ and transfer ‘stage’ to ‘Groups based on’. 

Repeat the unpaired sample t-test. 

 

 
 

Stage I: p-value < 0.001 and mean difference = -3.373 (95% CI -5.254 to -1.492) 

Stage II: p-value = 0.026 and mean difference = -5.045 (95% CI -9.481 to -0.608) 

Stage III: p-value = 0.473 and mean difference = -6.208 (95% CI -24.948 to 12.531) 

Stage IV not calculated 

 

2.2 Non-parametrical test 

 

As you have probably noted, the sample size of stage III is rather small to perform a 

parametrical test (n=11). The non-parametrical equivalent of an unpaired samples t-test would 

be more appropriate for this stratum. The non-parametrical test ranks all values and the test 

statistic is based on the value of the ranks, rather than the true value of the measurements.  

 

2.2 Is the age of the first tumor different between men and women for stage III? 

 

Step 1: determine the appropriate test  

 

Use Figure 2.1: age is numerical data. We would like to compare 2 groups (men and women). 

Men and women are independent groups. The sample size is small and age is not normally 

distributed, thus a non-parametrical test is needed, which is the Wilcoxon signed rank sum 

test. 

 

Step 2: perform the test and define the null hypothesis. 

 

H0: The distribution of age is the same between men and women. 

 

 Menu > Non-parametrical tests > Independent samples 

  

Choose to ‘customize analysis’ in the ‘Objective’ tab. Go to the ‘Fields’ tab and assign the 

test variable and the groups in the ‘fields’ tab. Go to the ‘Settings’ tab and choose ‘Customize 
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tests’. Choose ‘Mann-Whitney U test (2 samples)’, which is equivalent to Wilcoxon rank sum 

test (Figure 2.1). 

 

  

 

 
 

 
 

 
 

 

You can also use: 

 

 Menu > Non-parametrical tests > Legacy dialogs > 2 Independent samples 

 

Objective tab Settings tab 



26 

 

The second option via legacy dialogs provides more information on the test statistic, which is 

based on the rank of age, rather than the true value of each data point. 

 

 
 

 
 

 

Step 3: Interpret the output. 

 

The null hypothesis can be found in the output:  

‘The distribution of age at diagnosis is the same across categories of sex’ 

You will receive the output for all stages, but only stage III is shown in this chapter. The p-

value for stage III is 0.497. Thus, the null hypothesis cannot be rejected. There is no statistical 

evidence that age is different between men and women for stage III SCC.  

 

Do not forget to turn split file off! 

 

2.3 ANOVA 

 

ANOVA means ANalyis Of Variance and this type of analysis is used to compare the means 

of more than 2 groups. A one-way ANOVA compares the means by one grouping factor 

(categorical variable).  
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2.3 Is the age distribution different between the different body sites? 

 

Step 1: Define the Null hypothesis 

 

H0: The mean age is equal across all categories of subsite. 

 

Note: the result of the ANOVA will only tell you if there is a difference in age between the 

categories, but not between which categories. Therefore multiple post hoc t-tests are needed 

with a correction for multiple comparisons. 

 

Step 2: Are the model assumptions fulfilled? 

 

The model assumptions of ANOVA are: 

-Normality 

-Homogeneity of variances 

 

For larger sample sizes, the normality assumption is not important. The homogeneity of 

variances assumption is an important assumption of an ANOVA and can be tested using 

Levene’s test of equal variances. The assumption can be tested in the ANOVA procedure, 

thus a separate check beforehand is not needed. 

 

Step 3: Perform the analysis 

 

Analyze > Compare Means > one-way ANOVA 

 

Put age in the dependent list and the grouping variable (subsite_ICD) is the factor. Go to 

options and tick the box ‘descriptives’ and ‘homogeneity of variances test’. Also go to ‘post 

hoc’ and tick the box ‘Bonferroni’. This is the most widely used correction for multiple 

comparisons. The α-level should be divided by the number of comparisons to reach statistical 

significance. For example, in case of 4 comparisons, the p-value should be below 

0.05/4=0.0125 to reach statistical significance. This is equal to multiplication of the p-value 

with the number of comparisons and significance at p <0.05 level.  
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Step 4: interpret the result 

First look at the test of homogeneity of variance. The null hypothesis is that the variances are 

equal across the categories of subsite. A non-significant results thus indicates homogeneity of 

variances. In this case the p-value is 0.312, which indicates that the model assumption is 

fulfilled.  

The mean age for each subsite is shown in the descriptives table. Double click on the 

ANOVA table and the p-value. The significance of the ANOVA is 4.45*10
-7

, thus the null 

hypothesis is rejected. In the post hoc test, each category is compared to every other category, 

using multiple independent samples t-test with a Bonferroni corrected p-value. In this table 

the p-values of each comparison has been multiplied with the number of comparisons, which 

means that a significant p-value should be <0.05. 

 

2.4 Chis-square test / Fisher’s exact test 

 

To compare the distribution across categorical variables, a chi-square test is used. The chi-

square value is not valid, when the number of subjects is less than 5 in one of the cells. In that 

case a Fisher’s exact test should be used. 

 

2.3 Is the distribution between men and women different for different stages? 

 

Step 1: determine which test should be used and define the null hypothesis. 

Subjects from different stages are independent groups. From a crosstab between stage and sex 

can be seen, that the number of subjects in some cell is less than 5, which means that a 

Fisher’s exact test should be used.  

 

H0: the proportions of men and women are equal between the groups of stage. 

 

Step 2: Perform the test 

 

Analyze > Descriptive statistics > Crosstabs 

 

Go to statistics and tick the box ‘Chi-square’ (even if you are going to perform a Fisher’s 

exact test). Go to exact and tick the box ‘exact’.  
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Step 3: Interpret the result 

 

 
 

The 2-sided p-value of the Fisher’s exact test is 0.480, which indicates that the null hypothesis 

is not rejected. 
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Assignment 2.1 Simple inferential statistics 

 

Data: skin cancer screening  

Patients at risk for skin cancer received a full body examination. A questionnaire was filled in 

by the patients to determine factors which increase skin cancer risk  

 

Use Figure 2.1 for this assignment. Questions with an asterisk (*) have hints on the next page.  

 

1. Is the age distribution between patient with and without AK different? Define the null and 

the alternative hypothesis and perform the correct statistical test. 

 

Patients with AK received a 4-week treatment with 5-fluoro-uracil (5-FU) cream. This 

treatment has side effects, such as redness of the skin, burning sensation and pain. Patients 

were asked to fill in a questionnaire, which included a visual analogue score for pain score 

from 0 (no pain) to 10 (severe pain) before treatment (week 0), during treatment (week 2 and 

4) and after treatment (week 6). 

 

 
Figure 1: visual analogue scale for pain 

 

2a. How should the 95% CI for the mean pain score at week 2 be calculated? Choose between 

option 1 and 2. 

Option 1: Mean +/- 1.96*SD (standard deviation)  = 3.374 +/- 1.96*1.571 = 0.295 to 6.453 

Option 2: Mean +/- 1.96*SE (standard error)   = 3.374 +/- 1.96*0.1047= 3.168 to 3.580  

2b. We would like to know if there is a difference in pain score between week 2 and week 4? 

Choose the correct test using Figure 2.1. Define the null hypothesis.  

2c. What is the assumption of the chosen test and test the assumption. Don’t forget to select 

only AK patients. Start with calculating a new variable to test the assumption.  

2d. Perform the chosen test of question 2b and interpret the output. 

 

3a.We would like to know if there is a difference in pain score between week 4 and week 2 

between patients with different skin types. Use the Skin_reaction variable as grouping 

variable. Explore the skin_reaction variable.  

3b. Choose the correct test and define the null hypothesis. You need to make a new variable 

before you perform the test. Do not forget to test the most important model assumption. 

 

4. Among participants with AK above 75 years old, you would like to know if there is a 

difference in pain score between week 2 and week 4. Which test would you use? Define the 

null hypothesis and perform the test. Explore the variables before you perform the test. 

  

5. Is there a difference in family history of melanoma between patients with and without 

SCC? Define the null hypothesis and perform the correct test. Don’t forget to turn the filter 

for the previous questions off. You need to make a new variable using DO IF/ ELSE IF 
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statements before you can perform the test. Examples of this statement can be found in 

paragraph 1.6c and 3.4. 
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Chapter 3 Linear Regression 
 

Data: Psoriasis 

Psoriasis has been related with a number of comorbidities. Patients with psoriasis may have 

an increased risk of cardiovascular diseases. For this practical we will use a database of 

psoriasis patients and control patients of which multiple (sub)clinical measurements of 

comorbidities have been collected.  

3.1 Correlation 

Correlation is used to measure the association between two variables.  

 

It can be expected that diastolic and systolic blood pressure are highly correlated. The first 

step is to visualize the data using a scatterplot. You can use the chart builder. 

 

Graphs > Chart builder 

 

 
 

 

Or use a predefined format: 

 Graphs > Legacy dialogs > Scatter/dot > Simple scatter 

 

GRAPH 

  /SCATTERPLOT(BIVAR)=SBP WITH DBP 

  /MISSING=LISTWISE. 

 

1. 
2. 

3. 

1.  

Select the type of graph from 

the list 

 

2.  

Drag the graph to the chart 

preview 

 

3.  

Drag the variables to the axes. 
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We will calculate Pearson’s correlation coefficient, which is used for continuous variables. 

Pearsons correlation coefficient (r) is a number between -1 and 1.  

 

 
Figure 3.1: Some examples of relationships between two variables as shown in scatter plots. Note that 

the Pearson correlation coefficient (r) between variables that have curvilinear relationships will likely be 

close to zero. 

Source: Adapted from Stangor, C. (2011). Research methods for the behavioral sciences (4th ed.). 

Mountain View, CA: Cengage.). 

 

Analyze > Correlate > Bivariate  

 

The data was plotted first, because it is inappropriate to calculate a Pearsons correlation 

coefficient when there is no linear relationship. From the output we obtain a pearson’s r of 

0.607. The Pearson’s r
2
 indicates how much of the variability in y is explained by x. In this 

case 0.607
2
=0.369, meaning that 36.9% of the variability in systolic blood pressure is 

explained by diastolic blood pressure 

 

Spearman rank correlation coefficient is the non-parametrical equivalent and may be 

calculated when the sample size is very small.  

3.2 Simple linear regression 

Linear regression is used to predict the outcome of continuous outcome measures based on 

covariates. Different terminology is used to express the same thing: 

 

X1, X2,…Xk         Y 

=       = 

‘Predictor’       ‘Outcome’ 

‘Explanatory variables’            ‘Response’  

‘Independent variables’    ‘Dependent variable’ 
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‘Covariates’ 

 

Questions, which can be answered using linear regression: 

- How can Y be predicted on the basis of the X’s 

- Does X1 have influence on Y, when controlling for the other X’s  

 

We can predict the systolic blood pressure based on the diastolic blood pressure using a 

simple linear regression model. Recall the following formula from high school mathematics: 

Y = a + b*x   =    Y = β0 + β1*x 

 
 

3.2a a linear regression model for blood pressure 

Step 1: Let’s make a similar figure for blood pressure using our data. Double click on the 

Graph that you have produced in 3.1. The Chart editor is opened. Add a fitted linear line.  
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A linear regression line is fitted and the formula is shown.  

Y=45.48+1.26*X 

Systolic Blood Pressure=45.48+1.26*Diastolic Blood Pressure 

 

45.48 is the intercept (or β0) 

1.26 is the regression coefficient for diastolic blood pressure (or β1) 

 

Now we can predict the systolic blood pressure by using diastolic blood pressure. For 

example: the systolic blood pressure of a person with a diastolic blood pressure of 80 mmHg 

is on average 45.48+1.26*80=146.28 mmHg.  

 

Step 2: We can obtain the same result by building a linear regression model.  

  

Analyze > Regression > Linear  

 

The dependent variable is systolic blood pressure and the independent variable is diastolic 

blood pressure. Go to Statistics and tick the box for Confidence Intervals, Level 95% and 

Descriptives. 

 

Step 3: Interpret the output. We will focus on only two tables in this assignment.  
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In these tables you can find the r
2

, which we calculated before, as well as the regression 

coefficients. Use the unstandardized coefficients. The interpretation for the β for diastolic 

blood pressure is: for each unit increase in diastolic blood pressure (1 unit=1 mmHg) the 

systolic blood pressure increases with 1.259 (95% CI: 1.083-1.435).  

The p-value is 1.162*10
-35

, which indicates that this is statistically significant. In addition, the 

95% CI excludes the value 0. (i.e. 0 indicates no change for each unit increase, thus if the 

95% CI includes the value 0 there is no statistical significant difference).  

 

3.3 Model assumptions 

The model assumptions of a linear regression are: 

1. Independence of observations 

All observations should be obtained from different subjects (i.e. patients should not be 

included twice). 

2. Linearity 

We assume a linear relation between the outcome and the covariate. Non-linear relationships 

can be taken into account, which is discussed in paragraph 3.8. 

3. Normality (for x=1,x=2, etc.) 

This is best illustrated by the figure below. The outcome variable does not have to be 

normally distributed, but for every value of x we assume a normal distribution. Thus for our 

example of systolic blood pressure: an overall test of a normal distribution of systolic blood 

pressure is not required. However we assume, that for a diastolic blood pressure of 80 mmHg 

the values of systolic blood pressure are normally distributed, and for 81 mmHg diastolic 

blood pressure, the systolic blood pressure values should be normally distributed, as well as 

for 82 mmHg, etc. 

4. Homoscedasticity (standard deviations are equal, for x=1, x=2, x=3 etc.) 

This relates to assumption 3 and is also illustrated by the figure below. Equal standard 

deviations (SD) for each value of x, result in equal normal distributions for each value of x. 

This indicates that the variance is equal for each value of x.  
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Figure 3.2: a visualization of a linear regression model 

 

Looking at the model assumptions and figure 3, it may me more clear, that linear regression 

model may be regarded as an ANOVA (chapter 2.3): each value of x can be regarded as a 

group and variance of each group should be equal.  

 

The first assumption cannot be statistically tested, but should be included in the design of the 

study. Assumption 2 can be visualized by using a scatterplot. Further information can be 

found in paragraph 3.8 . Based on assumption 3, the residuals are expected to be normally 

distributed. Assumption 3 and 4 (normality and homoscedasticity) can also be tested by 

saving and plotting the residuals against the predicted values and the covariates:  

 

Step 1: Ask for a histogram of the residuals and a normal probability plot. 

 

 Analyze > Regression > Linear > Plots 

 

 
 

You obtained a histogram of the residuals with an normal curve and an P-P plot for the 

standardized residuals. A P-P plot can be interpreted as a Q-Q plot which was described in 

Chapter 1.4. A deviation from the straight line implies a deviation from normality. The plot 

indicates that there may be a small deviation from normality. 

 

Step 2: save the predicted values and the unstandardized residuals.  

 

Analyze > Regression > Linear > Save 
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Go to the ‘Save’ menu of the linear regression model and tick the box unstandardized 

predicted values and unstandardized residuals. In the variable view and data view you will 

find two new variables: PRE_1 and RES_1. 

 

Step 3: plot the diastolic blood pressure against the residuals and the predicted values against 

the residuals. 

 

GRAPH 

  /SCATTERPLOT(BIVAR)=DBP WITH RES_1 

  /MISSING=LISTWISE. 

 

You can easily change the syntax to make the second plot: 

 

GRAPH 

  /SCATTERPLOT(BIVAR)=PRE_1 WITH RES_1 

  /MISSING=LISTWISE. 

 

Step 4: Interpret the graph 

The residuals should be spread equal around 0 for each value of x (each value of diastolic 

blood pressure) and each predicted value of systolic blood pressure. You can add a reference 

line at 0 by opening the chart editor by double clicking on the plot.  

 

 
 

 

Both graphs indicate that the model assumption of homoscedasticity is fulfilled. A deviation 

from normality and homoscedasticity may indicate that a data transformation of the outcome 

variable (e.g. log transformation) is needed. A common problem is an increase of the variance 

for larger values of the covariates or predicted values, which is shown in figure 3.3.  
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Figure 3.3: indication of heteroscedasticity  

 

3.4 Categorical variable coding 

Categorical variables can also be taken into account into a regression model.  

 

Step 1:  make a new categorical variable 

The following syntax is useful to categorize continuous variables, such as BMI.  

 

 

DO IF MISSING(BMI). 

COMPUTE BMI_cat=999999. 

ELSE IF BMI <18.5. 

COMPUTE BMI_cat=2. 

ELSE IF BMI>=18.5 AND BMI<=25. 

COMPUTE BMI_cat=1. 

ELSE IF BMI>25. 

COMPUTE BMI_cat=3. 

END IF. 

EXECUTE.VARIABLE LABELS BMI_cat 'category of BMI'. 

VALUE LABELS BMI_cat 1 'normal weight' 2 'underweight'  3 'overweight'. 

 

Note that normal weight is coded as the first category, because SPSS can only take the first or 

the last category into account as reference category.  

 

Categorizing continuous variables leads to a loss of information. It is generally better to 

include them as continuous variables, but sometimes or in the final regression model 

clinically relevant categories may be easier to interpret.  

 

Step 2: create dummy variables for a categorical variable 

SPSS uses dummy variable coding with a reference category to include categorical variables 

in the regression model. The number of dummy variables is always the number of categories 

minus 1. For 3 categories, 2 dummy variables are sufficient: 

 

BMI_cat BMI_dummy_1 BMI_dummy_2 

1 (normal weight) 0 0 

2 (underweight) 1 0 

3 (overweight) 0 1 
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The dummy variables allow the bloodpressure to vary between the categories. In model A, 

BMI categories (1,2,3) are included in the model as a linear covariate, assuming that the 

difference in systolic blood pressure between category 2 and 3 is equal to the difference in 

systolic blood pressure between category 1 and 2 (Model A, Figure 3.4A).  

Dummy variable coding allows for differences between categories (model B, Figure 3.4B.  

 

Model A: Systolic blood pressure=β0+β1*BMI_cat 

Model B: Systolic blood pressure=β0+β1*BMI_dummy_1+β2*BMI_dummy_2 

 

 

                
Figure 3.4: Dummy variable coding in model B.   

 

Step 3: Perform the regression analysis with the categorical variable 

Perform to regression analyses. 

 

Analyze > Regression > Linear.  

 

Include both BMI_dummy_1 and BMI_dummy_2 as independent variables. This will lead to 

the following output table: 

 
 

 

Step 4: Interpretation of the output: 

The output tells you that the mean systolic blood pressure of underweight participants (level 

2) is 7.4 mmHg (95% CI: -30 to 16) lower compared to normal weight subjects. The p-value 

of the regression coefficient is 0.530, meaning that this the difference is not statistically 

significant. This was to be expected as there were only 4 participants underweight.  

The participants who are overweight (level 3) have a mean systolic blood pressure which is 

7.8 mmHg higher compared to normal weight participants (level 1) with an 95% between 2.8 

and 12.9 and a p-value of 0.002. This difference is statistically significant.  

 

  

A 
B 
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3.5 Multivariable linear regression. 

 

There are two main reasons to perform a multivariable regression model.  

1. Predict the outcome based on covariates: confounding is not an issue 

2. Investigate the association between exposure and outcome, adjusted for possible 

confounders.  

 

In this paragraph we will focus on the first option. Confounding will be discussed in 

paragraph 3.6. 

 

The systolic blood pressure may also be dependent on other variables, such as age. Both age 

and diastolic blood pressure can be used to predict systolic blood pressure. Note that the 

following statistical terminology is used: 

 

Univariate:  one outcome measure 

Multivariate:  multiple outcome measures  

Univariable:  one exploratory variable  

Multivariable: multiple exploratory variables  

 

3.4 What is the mean systolic blood pressure of a 60-year old non-smoking woman with 

a BMI of 19 and a diastolic blood pressure of 85 mmHg?  

 

Step 1: 

To answer this question we need to include age, current smoking, diastolic blood pressure in 

one linear regression model.   

 

REGRESSION 

   /DESCRIPTIVES MEAN STDDEV CORR SIG N 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT SBP 

  /METHOD=ENTER sex age BMI current_smoker DBP. 
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Step 2: Interpret the output 

 

Note: In the descriptive table (not shown above) you can see that only 318 participants are 

included in the analysis. SPSS performs a complete case analysis, thus participants with any 

missing value are excluded. There are statistical methods to deal with missing values (e.g. 

multiple imputation techniques), but that is beyond the scope of this practical. 

 

Model summary  

The model summary provides goodness-of-fit measures of the regression model. 

R square: equivalent to the simple R square as measured by Pearsons correlation coefficient. 

The simple R square tends to overestimate the explained variance when there is more than one 

covariate in the model.  

Adjusted R square: R square adjusted for the number of covariates in the model. Use this 

measure of goodness of fit for multivariable regression models. 

 

Thus, 49.9% of the variance in systolic blood pressure is explained by all variables in the 

model.  

 

ANOVA table 

The ANOVA table of a linear regression model test the overall regression. The null 

hypothesis of the ANOVA table is: 

H0: all regression coefficients (all β’s, except the intercept) are 0.  

If we look at the ANOVA table, we can see that the p-value is <0.001 and that the null 

hypothesis is rejected.  
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Coefficients 

In this table you will find the regression coefficients and the p-values shown for each 

regression coefficient (β) separately.  

 

The interpretation of the β for diastolic blood pressure is slightly different compared to a 

univariable model with diastolic blood pressure only. 

 

Interpretation of the β for diastolic blood pressure in a univariable model: 

The increase in systolic blood pressure per 1 mmHg increase in diastolic blood pressure.  

 

Interpretation of the β for diastolic blood pressure in a multivariable model: 

The increase in systolic blood pressure per 1 mmHg increase in diastolic blood pressure, 

while holding the value of all other variables in the model constant.  

 

Step 3: Predict the systolic blood pressure based on the model.  

 

The statistical model is: 

SBP= β0+ β1*sex+ β2*age+β3*BMI+β4*current smoker+β5*DBP 

SBP= -33.420+1.723*sex+0.899*age+0.265*BMI+3.103*current smoker+1.382*DBP 

 

The mean systolic blood pressure of a 60-year old non-smoking woman with a BMI of 19 and 

a diastolic blood pressure of 85 mmHg is: 

-33.420+1.723*1+0.899*60 +0.265*19+3.103*0+1.382*85=145 mmHg 

 

You can repeat the calculation using the estimates of the 95% CI of the β’s to obtain the 95% 

CI for the prediction. 

  

3.6* Confounding 

 

A confounder is a covariate which explains (part of) the association between exposure and 

outcome, but is not part of the causal pathway. Confounding may be a problem when 

answering the following research question: 

 

3.6 Is psoriasis associated with a larger intima media thickness (as a subclinical measure 

of atherosclerosis)? 

 

We suspect that the relation between psoriasis and intima media thickness may be influenced 

by other variables, such as smoking, which increases risk for psoriasis and is also associated 

with atherosclerosis. Confounders may be a priori selected based on literature or clinical 

expertise. Confounders may also be selected based on the influence on the association.  

Including all variables in the multivariable model which are associated with the outcome in 

the univariable analysis is not necessary, because not all variables will explain (part of)  the 

association between exposure and outcome and may only be related to the outcome. 

 

3.6a A priori selection of confounders based on literature 

From literature may be known that smoking, BMI, hypertension and serum cholesterol may 

influence both the risk on psoriasis as well as the risk on atherosclerosis. Therefore can be 

decided to include all these potential confounders in the multivariable model.  
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Step 1: Select all patients who do not have missing values in any of the selected variables to 

prevent analyses of a different samples for different analyses.  

 

Step 2: Perform a univariable model, an age and sex adjusted model and the full multivariable 

model: 

 

Univariable model: 

 
Age and sex adjusted model: 

 
Full multivariable model: 

 
3.6b Confounder selection based on influence of risk estimate  

 

Another approach to select confounders could be to include all potential confounders which 

influence the age and sex adjusted risk estimate by 10%. The β for psoriasis in the age and sex 

adjusted model was 0.034. An influence of 10% would be 0.034 +/- 0.0034 = 0.0306 and 

0.0374. Inclusion of a potential confounder in the age and sex adjusted model which leads to 

an influence on the regression coefficient of psoriasis outside these boundaries is considered a 

confounder and included in the multivariable model.  

 

 

Step 1:  

Change the following syntax by changing BMI in the last line into Cholesterol, 

current_smoker and Hypertension. 
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REGRESSION 

    /DESCRIPTIVES MEAN STDDEV CORR SIG N 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT IMT 

  /METHOD=ENTER psocase age sex BMI. 

 

Step 2:  

Examine the β for psoriasis for inclusion of each potential confounder.  

Potential confounder β for psoriasis  

(increase in IMT for psoriasis 

patients compared to controls) 

BMI 0.031 

Cholesterol 0.042* 

Smoking 0.034 

Hypertension 0.029* 

* indicates that the β is outside the aforementioned 10% boundaries. 

 

From these analyses we can conclude that only serum cholesterol and presence of 

hypertension confound the relation between psoriasis and intima media thickness 

 

Step 3: Perform the multivariable model based on the findings in step 2 

 

 
 

The conclusion for both methods is that psoriasis is not associated with a significantly 

increase in intima media thickness adjusted for potential confounders.  

 

3.7* Interaction 

In the example above we assumed that the increase in intima media thickness for each year of 

age is equal for control participants and patients with psoriasis. However, there may be effect 

modification by psoriasis, meaning that the increase in intima media thickness per year of age 

may be different between participants with and without psoriasis. This is called interaction 

and is illustrated by the figure below: 
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Figure 3.7 An example of interaction in linear regression between psoriasis and age for the difference in 

carotid intima media thickness. If no interaction is present, the difference in intima media thickness will be 

equal for all ages. In the case of statistical interaction, the difference in intima media thickness depends on age. 

Source: Wakkee et al. JID 2014. 

 

There is a difference between biological interaction and statistical interaction. 

 

Biological interaction = effect modification 

Statistical interaction = effect measure modification 

 

We can test the statistical interaction by including an interaction term in the regression model. 

However, this does not tell you if there is a biological plausible mechanism for the effect 

measure modification of the effect of age by psoriasis. Statistical significance is not the same 

as clinical relevance. Therefore you should specify the relevant interactions that you would 

like to test for in advance.  

 

Statistical interaction can be tested by using an interaction term in the regression model, 

which is illustrated in box and figure 

 

Linear regression model without interaction: 

IMT = β0+β1*age+β2*psoriasis 

 

Linear regression model with interaction: 

IMT = β0+β1*age+β2*psoriasis+β3*age*psoriasis 

 

To test for interaction it should be tested if β3 is equal to 0. 
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Graphical representation of a regression model with and without interaction between age and 

psoriasis 

 

 

3.7 Is there statistical interaction between age and psoriasis in a regression model for 

IMT? 

 

Step 1: define the null hypothesis; 

 

H0: There is no statistical interaction between age and psoriasis. Thus the β (regression 

coefficient) of the interaction term is 0.  

 

Step 2: Create a new variable by multiplying age with psoriasis 

 

COMPUTE age_psocase=age*psocase. 

EXECUTE. 

 

Step 3: perform the linear regression model and include the interaction term for age and 

psoriasis in the final model, which includes all possible confounders.  

 

Step 4: Interpret the output 

 

 
 

The β for the interaction term is 0.005, which means that for each year of increase in age, 

there is an extra increase of 0.005 mm in IMT on top of the 0.007 mm increase for psoriasis 

patients compared to controls. However, the p-value of this interaction term is 0.183, which 

indicates that the null hypothesis should not be rejected and there is no statistical interaction 

between age and psoriasis. The interaction term should not be included in the final 

multivariable model.  
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Don’t forget to put the filter off before the next paragraph. 

 

3.8* Non-linear relationships 

 

From Scatterplots it may be obvious that the predictors are not linearly related to the outcome. 

This will lead to a non-significant β for a linear predictor. There are various ways to deal with 

non-linear relationships in regression analysis.  

 

Categorize 

This is an easy way of representing non-linear relationships. Clinically relevant categories 

may be used in the regression model. A disadvantage is that many β’s (and thus degrees of 

freedom) are spend, cut-off values may be arbitrary and thereby valuable information is lost.  

 

Polynomials 

Another easy way of testing for non-linearity may be to include polynomials. The first step is 

to include a term for X
2
 in the regression model. If X is linearly related to the outcome the 

regression coefficient is 0. However, not all relationships have a parabolic shape. Higher 

powers of X may be included in the model, but the disadvantage of polynomials is that they 

may behave ‘wobbly’ in the tails.  

 

Use the SPSS curve estimation to test for a possible quadratic relationship: 

 

Analyze > Regression > Curve estimation 

 

Ask for a linear and a quadratic curve and the plots. 

 
 

 
 

From the table can be obtained that there is no evidence of a quadratic relationship between 

age and IMT, as the regression coefficient for age
2
 is not significant. 
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Fractional Polynomials 

Fractional polynomials have with different powers compared to regular polynomials, e.g.: 

Y=β0 + β1*X
-1

 +β2*X
2
  

Fractional polynomials are therefore more flexible, but models may be difficult to interpret. In 

STATA fracpoly is useful command to select the best degree and powers. In SPSS it is not 

possible to automatically select the best degree and powers.  

 

Splines 

The use of spline functions is a very flexible way of regression modelling with efficient use of 

the degrees of freedom (meaning that not many β’s are needed to model complicated non-

linear relationships). There are many sorts of splines; simple linear splines, cubic spline, 

restricted cubic splines, penalized cubic splines. SPSS can take spline functions into account, 

but modelling spline functions is also relatively easy in R.   

 

Note: When using logistic regression (Chapter 4), linearity is assumed between the predictors 

and the logit. A Cox proportional hazards regression (Chapter 6) assumes linearity with the 

LN(hazard). The same principles and  methods of non-linear relationships apply to those 

types of regression.  
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Assignment 3-1 Univariable and multivariable linear regression 

 

Data: blood pressure 

We want to study with multiple regression the joint relationship of age, body weight and pulse 

rate with the diastolic blood pressure. The exercise uses the data from BLDPRES.SAV. (Open 

file 'BLDPRES.SAV'.) Make sure that you Paste each action into your syntax first before you 

Run it. 

 

1. Obtain the correlation coefficients between age, body weight, pulse rate and diastolic blood 

pressure and examine these, to learn something about any potential correlation between the 

variables.  

 

2a. To visualize the data and to see if it is appropriate to calculate a Pearson correlation 

coefficient, we look at the simple relationships between each of the predictor variables and the 

diastolic blood pressure. Make a scatter plot with DIAS as Y-variable and AGE as the X-

variable. Repeat this for body weight and pulse frequency 

2c. Provide the regression coefficients and interpret the r square for age, body weight and 

pulse frequency using the plot.  

 

3. Fit three univariable models for age, body weight and pulse frequency as covariates and 

diastolic blood pressure as dependent variable.  

Give the regression coefficients, 95% CI and their significance. 

What is the interpretation of these regression coefficients? 

 

4. Fit a multivariable model for diastolic blood pressure including age weight and pulse as 

independent variables. Ask for 95% confidence intervals for the regression coefficients 

(Statistics) and a Histogram (Plot) and Normal Probability Plot (Plot) and save the predicted 

values and the unstandardized residuals (Save). 

 

4a. Consider the ANOVA table accompanying the multiple regression analysis. What is the 

hypothesis that is tested with the F-test and what is the conclusion?  

4b.What is the percentage variability in diastolic blood pressure explained by age, weight and 

pulse together?  

4c. Examine the histogram and normal probability plot of the residuals and judge whether the 

assumption of Normality is reasonably fulfilled. 

4d. Plot the fitted values against the residuals and the covariates against the residuals and 

judge whether the assumption of homoscedasticity is fulfilled.  

4e. Look at the estimated regression coefficients. What is their interpretation? Notice that the 

regression coefficients do not differ much from the simple regression coefficients you have 

found in part b of this exercise. Can you explain that? 
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Assignment 3-2 Confounding, Interaction, non-linear relationships  

 

 

Data: phlebology 

Twenty-five patients with varicose veins were examined. We are interested in the relation 

between severe varicose veins (those with a healed ulcer or an active venous ulcer) and 

patient reported outcomes. Patients scored their overall health with a number between 0 (very 

bad health) and 100 (excellent health). 

 

1. The Clinical Etiologic Anatomic Pathophysiologic (CEAP) score indicates the severity. 

Patients with C5 and C6 were combined into 1 category due to the low patient numbers. 

Examine the relation between CEAP and overall health score.  What is the difference in 

health score between patients with and without venous ulcers? Is this difference statistically 

significant?  

 

Other variables may confound the relation between venous ulcer and health score. 

2a. Recall the definition of a confounder 

2b. Based on the answer on question 2a, think of possible confounders (regardless of 

statistics). 

2c. Perform a model with these a priori determined confounders 

 

It is also possible to statistically test if variables distort the relation between CEAP and health 

score.  

3a.Start with an age and sex adjusted model. What is the point estimate of the age and sex 

adjusted CEAP score and the interpretation of this estimate? 

3b. Use the 10% rule to determine if the diameter of the great saphenous vein 

(GSV_diameter) and weight confound the age and sex adjusted CEAP estimate.  

 

4. Is the relation between weight and overall health score different between those with and 

without venous ulcers? Use the final model of 3b. 

 

5a. Examine the linearity assumption using scatterplots for GSV_diameter , weight and heart 

rate .  

5b. Use the curve estimation procedure to find the correct curve for the variable without a 

linear relationship. Which model would you test? 

5c. What is the difference in R
2
 between the linear and the non-linear relationship? 

5d. What is the univariable model based on the curve-estimation?  
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Chapter 4 Logistic Regression 
 

Data: actinic keratosis (AK) 

More than 800 people were screened on the presence of actinic keratosis. The number of 

actinic keratosis was registered as well as potential risk factors for the development of actinic 

keratosis.   

 

Logistic regression is used when the outcome is binary, for example: 

0 = no disease 

1= disease 

These are often case control studies. Logistic regression is used to predict the effect of the 

covariates on the probability of the outcome.  

 

The probability to have the disease is restricted to the values 0 and 1. To transform these 

values, the logit link is used (see box below). Logistic regression is used to estimate the odds 

ratio.  

 

The logit link 

π = probability on the disease 

odds = 
𝜋

1−𝜋
 

π = 
𝑜𝑑𝑑𝑠

𝑜𝑑𝑑𝑠+1
 

logit = ln(odds) 

 

General linear model   linear regression, outcome is continuous  

Generalized linear model   e.g. logistic regression, ordinal regression, Poisson regression.   

The outcome variable can be binary, categorical or count data. 

A link function for the outcome is used to linearly relate the 

predictors to this link function.  

 

The logistic  regression model: 

ln(𝑜𝑑𝑑𝑠) = 𝛽0 +  𝛽1𝑋1 + 𝛽2𝑋2 +  𝛽3𝑋3 + ⋯ +  𝛽𝑘𝑋𝑘 
 

Recall the formula of a linear regression model en note the similarities: 

Y = 𝛽0 +  𝛽1𝑋1 +  𝛽2𝑋2 +  𝛽3𝑋3 + ⋯ +  𝛽𝑘𝑋𝑘 
 

 

4.1 Odds Ratio 

 

The odds ratio is an approximation of the risk ratio and can be calculated from a simple 2x2 

table.  

 

4.1 What is the risk ratio and the odds ratio of females vs males for the development of 

actinic keratosis? 

 

 Analyze > Descriptive Statistics > Crosstabs 

 

Tick the box ‘Risk’ in the ‘Statistics’ menu. 
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Risk of AK in males=
163

379
= 0.43 

Risk of AK in females=
120

466
= 0.25 

Risk Ratio females vs males=
120/466

163/379
= 0.60 

 

Odds of AK in males=
163

216
= 0.75 

Odds of AK in females=
120

346
= 0.35 

Odds Ratiofemales vs males=
120/346

163/216
= 0.46 

 

 

The odds ratio is not exactly the same as the risk ratio. The approximation becomes better if 

the disease is rare, which is not the case for AK. Try to calculate the risk ratio and the odds 

ratio of females vs males for the following 2x2 table: 

 

 Psoriatic arthritis Total 

 No Yes  

Sex                 Male 370 9 379 

Female 452 14 466 

Total 822 23 845 

 

 

 How to calculate a 95% of the OR? 

 

 Disease Total 

 No Yes  

Exposure            No a b a+b 

Yes c d c+d 

Total a+c b+d a+b+c+d 

 

se ln(OR)  =√
1

𝑎
+

1

𝑏
+

1

𝑐
+

1

𝑑
 

95% CI of OR =𝑒ln(𝑂𝑅)±1.96∗𝑠𝑒(ln (𝑂𝑅)) 

 

4.2 Univariable Logistic Regression 
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We can obtain the same result using logistic regression 

 

Analyze > Regression > Binary Logistic 

 

AK_binary is the dependent variable and sex is the covariate. Sex is a categorical covariate 

for which the reference category should be specified. Go the ‘Categorical’. Move the 

covariate to the ‘Categorical Covariates’ box. Use the ‘Change Contrast’ box and choose 

‘Indicator’ as contrast and ‘First’ as reference category. Don’t forget to click on ‘Change’ as 

SPSS takes the last category as the reference by default.   

 

 
 

 
 

 
 

Block 0: only includes the intercept. Block:1 includes the covariates. In the ‘Categorical 

Variables Codings’ table you can see, that the reference category is the category which has 

the value 0. The OR is the exponent of the regression coefficient (Exp(B)), which is 0.460 as 

we have calculated before. 
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Why is Exp(B) the OR? 

 

ln(𝑜𝑑𝑑𝑠) = 𝛽0 +  𝛽1𝑠𝑒𝑥 

ln (𝑜𝑑𝑑𝑠)𝑚𝑎𝑙𝑒𝑠 = 𝛽0 +  𝛽1 ∗ 0 =  𝛽0 

ln (𝑜𝑑𝑑𝑠)𝑓𝑒𝑚𝑎𝑙𝑒𝑠 = 𝛽0 +  𝛽1 ∗ 1 =  𝛽0 + 𝛽1 

𝑜𝑑𝑑𝑠𝑚𝑎𝑙𝑒𝑠 = 𝑒𝛽0 

𝑜𝑑𝑑𝑠𝑓𝑒𝑚𝑎𝑙𝑒𝑠 = 𝑒𝛽0+ 𝛽1 

𝑂𝑅𝑓𝑒𝑚𝑎𝑙𝑒𝑠 𝑣𝑠.𝑚𝑎𝑙𝑒𝑠 =
𝑜𝑑𝑑𝑠𝑓𝑒𝑚𝑎𝑙𝑒𝑠

𝑜𝑑𝑑𝑠𝑚𝑎𝑙𝑒𝑠
=

𝑒𝛽0+ 𝛽1

𝑒𝛽0
= 𝑒𝛽1 

 

 

4.3 Multivariable Logistic Regression 

 

4.3a Are baldness, skin color, sex and age independent predictors of risk on actinic 

keratosis? 

 

Analyze > Regression > Binary Logistic 

 

Step 1: To answer this question we need to fit a model which includes all covariates. Ask for 

95% CI of Exp(B) at ‘options’ and tick the box ‘CI for Exp(B) 95%’. Specify the categorical 

variables. Use ‘no baldness’ and ‘fair/white’ as reference categories. These are both the last 

categories. 

 

LOGISTIC REGRESSION VARIABLES AK_binary 

  /METHOD=ENTER Gender Age Baldness Skincolor  

  /CONTRAST (Gender)=Indicator(1) 

  /CONTRAST (Baldness)=Indicator 

  /CONTRAST (Skincolor)=Indicator 

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).  

 

Step 2: Interpret the output: 

 

 
 

There are no patients with 

missing values in any of the 

included variables 
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Coding of AK_binary (No/Yes) 

The probability on AK=yes is modeled 

The dummy variables created 

by SPSS: 

e.g. Baldness(1) in the 

‘Variables in the equation’ 

table represent Severe 

baldness 

The best approximation of the R
2
 is 

Nagelkerke R
2. The interpretation 

is equal to the interpretation of the  

R
2 

of a linear regression 

If the predicted 

probability of AK of 

this regression model 

is > 0.5 than a 

patient is classified 

as having AK. Thus 

with this model, 

30.4% is correctly 

predicted 

Separate p-values of 

each category of 

‘Baldness’ 

Overall p-value of the 

variable ‘Baldness’ 

0 for all dummy variables  

Indicate the reference category 
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The p-values of all variables are below 0.05, (gender=0.001, age<0.001, baldness=0.003, skin 

color is 0.039) , thus we can conclude that all variables predict AK risk independent of the 

other variables in the model.  

 

Interpretation of the OR for a continuous and a categorical variable: 

Age: the odds of AK increases with 6.9% per year increase in age adjusted for sex, baldness 

and skin color 

Skin color: patients with a white to olive skin have an decreased odds on AK (OR 0.54 (95% 

CI: 0.33-0.87) compared to patients with a fair/white skin. The risk of patients with a light 

brown/ brown or black skin could not be estimated, due to the low number of patients (The 

actual number of patients cannot be obtained from this output, but should have been 

calculated in advance by using a frequency table) 

 

4.3b Is there multiplicative interaction between skin color and baldness?  

 

In other words, are patients who are both severely bald and have a fair/white skin at extra 

increased risk of AK than would have been expected based the risk of baldness and skin color 

alone? 

Include an interaction term in the model by selecting both variables by pressing the Ctrl key 

and use the ‘>a*b>’ key. Always put both variables in the model as well, otherwise the 

interaction term will be meaningless. 

 

 
 

Thus the model includes: 

Gender 

Age 

Baldness 

Skincolor 

Baldness*Skincolor 
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The p-value of the interaction term is 0.584, thus there is no statistical interaction between 

baldness and skin color. In case of interaction, the ORs are difficult to interpret and the best 

option would have been to stratify the model on baldness to obtain separate ORs for age, 

gender and skin color for each category of baldness. 

 

4.4* Selection of variables 

 

Which variables should be included in the multivariable model? 

 

This is an important question. It is dependent on the purpose of the model. Do you want to 

predict the outcome or adjust for possible confounders? It is also dependent on the sample 

size of the study (see box below).  

 

In general, there are three possibilities to choose which variable should be included in the 

model. A combination of these is also possible. Specify the method which you would like to 

use in advance. 

1. based on literature or clinical expertise 

2. based on influence on the risk estimate of the exposure variable (has been discussed in 

paragraph 3.6) 

3. based on statistical significance 

 

Personally, I prefer option 1 and 2, but option 3 is also widely used and will be discussed in 

this paragraph. Based on statistical significance you can choose between two stepwise 

selection methods: backward elimination and forward selection.  

Forward selection:  start with an empty model and the most significant 

variable is included in each step 

Backward elimination:  start with a full model and the variable with the highest p-

value is excluded in each step.  

Backward elimination is to be preferred as this takes all possible associations into account. 
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Step 1: perform a logistic regression model using backward elimination 

 

Analyze > Regression > Binary Logistics 

 

 
 

Choose Backward: LR, which means Likelihood Ratio and refers to the method of how the p-

value is calculated.  

Include the following variables: Gender Age SES_cat Length Weight Smoking Baldness 

Skincolor Sunburn. Specify all categorical variables and change the reference category for 

gender into the first category. 

Go to ‘options’ and have a look at the stopping rules (p-values) for a forward selection (entry 

= PIN(0.05) ) and a backward elimination (removal =POUT(0.10)). 

 

LOGISTIC REGRESSION VARIABLES AK_binary 

  /METHOD=BSTEP(LR)  Gender Age SES_cat Length Weight Smoking Baldness Skincolor 

Sunburn  

  /CONTRAST (Gender)=Indicator(1) 

  /CONTRAST (SES_cat)=Indicator 

  /CONTRAST (Smoking)=Indicator 

  /CONTRAST (Baldness)=Indicator 

  /CONTRAST (Skincolor)=Indicator 

  /CONTRAST (Sunburn)=Indicator 

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).  

 

 

Step 2: Interpret the output 

 

In block 1 you see step 1 until step 5 for each table. ‘Look at the variables in the equation 

table’. Step 1 is the full multivariable model. The variable with the highest p-value in this step 

is weight (p=0.996), thus this term is removed and all OR and p-values are calculated again in 

step 2. Smoking has the highest p-value in step 2 (p=0.456) and is subsequently removed. The 
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final model is the model as calculated in step 5 where none of the variables has a p-value 

above 0.10. This stopping rules can be changed. In the output you can see that the p-value of 

skin color is 0.107. You may wonder, why this variable has not been removed. This p-value is 

based on the Wald test statistic, while we have based the backward elimination on p-value 

from the Likelihood Ratio test statistic.  

 

 

How many variables can be screened for an association based on the sample size to prevent 

overfitting?  

 

Overfitting occurs if the model is too complex and the sample size too small. This leads to too 

optimistic regression coefficients in a prediction model and future observations will not be 

correctly predicted.  

Each regression coefficient (β) is also called a parameter and a degree of freedom (df) which 

is spend. A categorical variable with 3 categories (e.g. baldness) has 2 β’s and thus 2 df.  

Use the following formulas to calculate the number of df that can be spend on regression 

modelling. Note that these include all variables screened for association, thus not only those 

included in the final model.  

 

Linear regression: 
𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒

10
     

Logistic regression:  
min (𝑐𝑎𝑠𝑒𝑠,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)

10
 

Cox proportional hazards regression (survival analysis): 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠

10
 

 

Example: a case-control study with 600 cases and 200 controls can spend 20 df  for prediction 

modelling. A more stringent approach would be to divide by 20 instead of 10. 

(source: F. Harrell, Regression Modelling Strategies)  

 

4.5* Goodness of fit measures 

 

Measures of model performance includes both measures of discrimination (how well can the 

model discriminate between those with and without the outcome) and calibration (agreement 

between observed and predicted values). An easy way to interpret measure of overall 

performance is the R
2
. Nagelkerke’s R

2
 has been mentioned in paragraph 4.3.  

 

A widely used method as a measure of discrimination is the receiver operating  curve (ROC) 

curve. The true positive rate (sensitivity) is plotted against the false positive rate (1-

specificity) for each cut-off value of the predicted probability.  

To use this function in SPSS you need to save the predicted probabilities of the logistic 

regression model at ‘save’ and tick the box ‘probabilities’ of ‘Predicted Values. A new 

variable (PRE_1) will appear in the dataset. 

 

Step 1. Fit a model with Age only and fit a model with Gender Age Baldness Skincolor 

Sunburn and save the predicted probabilities of both models. 

 

Step 2: Make a ROC curve of both models 

 

Analyze > ROC Curve 
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Use PRE_1 (or PRE_2) as test variable and the state variable is AK, indicate that 1 is the 

value which represents AK. Ask for a diagonal reference line as well.  

 

Step 3: Interpret the output 

 

 

 
 

The Area Under the Curve (AUC) reflects how well the model discriminates between patients 

with and without AK. The diagonal (green line) represents an AUC of 0.50, which means that 

you might as well flip a coin. On the left side the ROC curve of the model with age only is 

shown. This has a AUC of 0.628, which is not very good. The model which includes age, 

gender, skin color, baldness and sunburn has an AUC of 0.716, which represents acceptable 

discrimination between patients with and without AK based on the model.  

Sometimes the following conventions are used: 

AUC>0.7: acceptable discrimination 

AUC>0.8: excellent discrimination 

AUC>0.9: outstanding discrimination (very unusual) 
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4.6* Conditional Logistic regression 

 

Case-control studies can be matched on confounding factors. In this dataset each patient with 

AK was matched to 2 control participants of the same age and sex without AK.  

The matching variables (age and gender) should not be included in the regression model. The 

confounders were taken into account by study design and statistical adjustment is therefore 

not necessary and incorrect. Possible interaction with the matching variables can be taken into 

account in the analysis.  

 

Conditional logistic regression should be performed with a trick in SPSS. Each case-control 

(or case-2 controls) pair is regarded as one stratum. The analysis should be performed using 

Cox proportional hazards regression  

 

Step 1: select all patients who are included in the nested matched case-control study. 

(match_id not equal to 0) 

 

Data > Select Cases 

 

Step 2: calculate a time variable which is 1 for each subject.  

 

 Transform > Compute variable 

 

Step 3: Perform a conditional regression model with baldness and skin color 

 

Analyze > Survival > Cox Regression 

 

 
 

Ask for 95% CI of Exp(B) at ‘options’ and do not forget to specify the categorical variables. 

 

Step 4: Interpret the output. 

 

In the stratum table you can see the number of pairs (n=48) and the number of cases (event=1) 

and controls (censored=2). . 
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Write down the number of pairs with only 1 control and the calculated OR. What is the 

difference with the OR obtained in paragraph 4.3 for the same variables? And what is the 

reason for this difference? 

 

4.7* Ordinal and multinomial regression 

 

The number of AK was also assessed in categories (no AK[0], 1-3 AK[1], 4-9 AK[2], >10 

AK[3]). A lot of information is lost by reducing this information to a binary variable (AK 

yes/no). Regression analysis with multiple outcome categories is also possible.  

 

Ordinal regression 

Ordinal regression is also called the proportional odds model. Ordinal regression assumes that 

the odds ratio is equal between every cut-off value of the categories: 

 

OR 0 vs 1+2+3 

= 

OR 0+1 vs 2+3 

= 

OR 0+1+2 vs 3 

 

This assumption can be tested using the test of parallel lines. The Null hypothesis of the test 

of parallel lines is that the regression coefficient (β) is equal across the outcome categories.  

 

Analyze > Regression > Ordinal 

 

Step 1: First select all patients with a value of AK which is not missing (both system and user 

missing).  

 

Step 2: Perform an ordinal regression. Use the number of AK in categories as outcome 

variable and baldness as independent variable (Factor). Go to ‘output’ and select the test of 

parallel lines. Note that SPSS calls continues variables ‘covariates’ and categorical variables 

‘factors’. 

 

Step 3: Interpret the output. 
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Note: SPSS always takes the last category as reference category and only LN(odds) estimates 

are provided. The exponent of the estimates should be taken to calculate the OR. 

 

The OR of medium baldness compared to no baldness is e
0.325

=1.38  between every cut-off 

value of the categories of number of AK. 

 

However, the p-value of the test of parallel lines is <0.001 and the null hypothesis is rejected. 

The proportional odds assumption is not fulfilled and an ordinal regression may not be the 

best model.  

 

Multinomial regression 

If this assumption does not hold a multinomial regression may be more appropriate. A 

multinomial regression provides an OR for each category compared to a reference category: 

 

OR 1 vs 0 

OR 2 vs 0 

OR 3 vs 0 

 

Analyze > Regression > Multinomial Logistic  

 

Step 1: Perform the analysis. Use the number of AK in categories as a dependent variable. 

Select the first category as the reference category and use baldness as a factor.  

 

Step 2: Interpret the output. 
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The reference category is indicated below the table. Odds ratio are directly provided. Note 

that the last categories of the independent variables (factors) are the reference categories. For 

example the OR of 4-9 AK vs no AK is 6.7 (95% CI 3.6-12.5) for severe baldness compared 

to no baldness.  
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Assignment 4-1 Logistic Regression - basic 

 

Data: actinic keratosis (AK) 

More than 800 people were screened on the presence of actinic keratosis. The number of 

actinic keratosis was registered as well as potential risk factors for the development of actinic 

keratosis.   

 

1. Calculate the OR of ever smoking vs never smoking from the 2x2 table below. 

 

 
 

2. Perform an univariable binary logistic regression model with smoking as an independent 

predictor and perform an age and sex adjusted model. Provide the univariable and adjusted 

OR for ever smoking vs never smoking and their 95% CI.  

 

3a.Are age, sex, socioeconomic status, smoking, baldness and skin color independent risk 

factors for actinic keratosis? Provide the p-value of each variable. 

 

3b.What is the adjusted OR (95% CI) of a high socioeconomic status vs a low socioeconomic 

status? 

 

3c.What is the adjusted OR (95% CI) for a 10-year increase in age? 

  

4. Is the risk associated with ageing higher in smokers than in non-smokers?  

 

5. Does the including ‘ever lived in a sunny country for > 1 year’ make a statistical significant 

contribution to prediction AK risk of the model in question 3a? Provide the p-value and the 

improvement in explained variance.  
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Assignment 4-2 Logistic Regression - advanced 

 

1. Calculate the 95% CI for the OR of psoriatic arthritis of females vs males in paragraph 4.1 

 

Data: actinic keratosis (AK) 

More than 800 people were screened on the presence of actinic keratosis. The number of 

actinic keratosis was registered as well as potential risk factors for the development of actinic 

keratosis.   

 

2. Perform a backward elimination binary logistic regression model using age, sex, baldness, 

smoking, BMI, skin color, hatglasses and sunburn. Define the categorical covariates correctly. 

Use a p-value of 0.05 for backward elimination. Which variables are included in the final 

model?   

 

3. Start with the variables included in the final model obtained in question 2. Is the risk 

increase per year of age higher among those people who lived in a sunny country for >1 year? 

Provide the test and the p-value.  

 

4. Provide a measure of discrimination of the final model in question 2. What is your opinion 

about the discrimination of this model.  

 

5. Include the variable which indicates if people worked outdoors in the final model of 

question 2. What is the improvement in overall goodness of fit and discrimination? 

 

6. Fit an univariable proportional odds model (ordinal regression) for smoking and number of 

AK. 6a. Is the proportional odds assumption fulfilled? What is the test and the null 

hypothesis?  

6b.If the assumption is fulfilled, provide the OR and its interpretation. 

 

7. Fit a multivariable multinomial logistic regression model for number of AK including age, 

sex and baldness.  

7a. Is the risk on >10 AK higher among males or females adjusted for the other covariates 

(both categorical and continuous covariates)? Provide the OR of males vs females and 95% 

CI. 

7b. Is baldness independently related with the risk on the number of AK? Provide the overall 

p-value. 
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Chapter 5 Survival Analysis: Kaplan Meier 
 

Data: Survival 

The survival of 15 cancer patients from a randomized controlled trial was registered. Seven 

patients received treatment and 8 patients received placebo. 

5.1 What is survival analysis? 

 

In survival analyses the time to the event (e.g. death, disease, recurrence) is analysed, rather 

than having the event or not , like in a logistic regression analysis. An event is also called a 

failure. In survival analysis we have to deal with censored data, meaning that we have some 

information about the survival time, but we don’t know the survival time exactly.  

 

There are several reasons for censoring: 

1. the patient has reached the end of the study without experiencing the event 

2. the patient is lost to follow up 

3. the patient withdraws from the study without experiencing the event. 

 

 

 
 

The model assumption of a Kaplan-Meier curve is ‘independent censoring’. This means that 

we assume that patients who are censored have the same probability of experiencing the event 

of interest as those who remain in the study. This assumption cannot be tested. 

 

Although patients enter the study throughout the calendar time, we assume that patients who 

are recruited early have the same survival as those who were recruited later. This can be 

tested. The study entry is time (t)=0. The event is coded as 1 and the censored observation as 

0 (either lost to follow up, withdrawals, or end of study). Thus, we have two outcome 

variables in survival analysis: the follow-up time and a variable, which indicates failure or 

censoring.  
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5.2 Calculate Kaplan-Meier survival estimate 

 

A Kaplan-Meier curve can be easily calculated by hand. Consider the following survival 

times:  

 

6*,8,15,15,19*,20,22,25,32*,36*,41*,42*,48*,48,52* 

 

An asterisk (*) indicates that the patient has been censored. All other patients died. Finish the 

following survival table to calculate the Kaplan-Meier (KM) survival estimates 

 

 

ti 

Time 

Ni= 

Patients at 

risk at ti 

δi= 

Patient with 

failure at ti 

Si= 

Patients who 

survive after ti 

Si/Ni KM survival 

estimate 

t=8 14 1 13 13/14=0.929 0.929 

t=15 13 2 11 11/13=0.846 0.846*0.929=0.786 

t=20      

t=22      

t=25      

t=48      

 

 

5.3 Kaplan – Meier curve in SPSS 

 

The obtained KM survival estimates are usually represented in a curve. The curve starts at 

t=0, where the survival is 100%. Each time an event happens the curve drops to the next KM 

survival estimate. 

 

Step 1: Open the survival data of chapter 5 and inspect the variables and go to: 

 

Analyze > Survival > Kaplan Meier 
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Define the two outcome variables: the survival time and failure/censoring variable. Go to 

‘options and ask for a survival table, mean and  median survival and a survival plot.  

 

Step 2: Interpret the output. 

 

Survival Table: Look at the survival table. Compare the table to the obtained KM estimates in 

paragraph 5.2.  

 

Survival Plot: The survival plot is shown below. Compare the plot to the table. The curve 

drops at the time of each event. SPSS also shows when a patient has been censored.  

 

Mean and Median Survival: The median survival is the time when the survival probability is 

50%. The dotted red line indicates 50%. Although the actual survival is 0.367 at t=48, the 

curve does not cross the red line before this time point and therefore the median survival time 

is 48 months.  

The mean survival is calculated by using the area under the curve. Survival times are 

frequently highly skewed data and therefore the median survival is a better measure than the 

mean survival.  
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5.4 Logrank test 

 

In most questions we are not interested in overall survival, but we would like to compare the 

survival between groups. Consider the following research question: 

 

5.4. Is the survival of patients who received treatment better compared to those who 

received placebo? 

 

To answer this question we will use the logrank test. The logrank test compares the number of 

events at every time points of the survival curve. The null hypothesis is as follows: 

 

H0: there is no difference in survival between the groups 

 

Step 1: Perform the logrank test in SPSS 

 

Analyze > Survival > Kaplan Meier 

 

 

To perform the logrank test in SPSS, use Factor as grouping variable. Go to ‘Compare Factor’ 

and tick the box of Log rank.  

 

 
 

Step 2: Interpret the output 

 
 

The p-value of the logrank test is 0.023, thus the null hypothesis can be rejected and the 

survival of the treatment and the placebo group is not equal. The survival plot shows that the 

survival of the treatment group is better compared to the placebo group. 
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Assignment 5-1 Kaplan-Meier curve and Logrank test 

 

Data: melanoma 

For this assignment we have created an adapted dataset of melanoma patients selected from a 

population-based database. There is information on age and date of diagnosis, sex, stage, vital 

status and survival time. 

 

1. Inspect the data: which variables are in there, how many patients are included? Which are 

the variables you would need for a survival analysis? 

 

2. Make a Kaplan-Meier curve. If you want to limit the output, you can choose not to display 

the survival table in the ‘Options’ menu. What is the mean and median survival time of the 

melanoma patients? 

 

You have now made the first K-M plot for overall survival, but we might be more interested 

in some sub-analyses, comparing the survival of melanoma patients by gender, nodal stage 

and metastatic stage. 

 

3.  Compare melanoma survival by sex: who have a better survival? How large is the 

difference? Is this difference significant? Define the null hypothesis of the logrank test.  

 

4a. Do the same for survival by nodal stage. What can you conclude about patients with 

stage X? how would you describe them in terms of prognosis? Does this make sense 

clinically? 

4b. Repeat the analysis, but perform also a trend test. Go to ‘Compare Factor’ and choose 

‘Logrank’ and ‘Linear trend for factor levels’. What can you conclude from this test? 

 

5. Compare melanoma survival by metastatic stage: what do you conclude with 

regards to patient with stage X? Does this make sense clinically? 
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Chapter 6* Cox proportional hazards regression 
 

Data: melanoma 

In this chapter we will continue with the data presented in assignment 5.1. There is 

information on age and date of diagnosis, sex, stage, vital status and survival time. In 

addition, data on medication use (beta-blockers) has been collected.  

 

6.1* What is a Cox proportional hazards model? 

 

We have seen, using the Kaplan-Meier method, that survival of melanoma differs by sex and 

stage. However, using this method, it is not possible to look at more than one variable at the 

time, unless you make many strata, which is usually practically impossible because you would 

need very large datasets. Cox proportional hazards method makes it possible to make 

multivariable models. Cox proportional hazards model provides hazard ratios. The hazard is 

the probability of experiencing an event at Δt, conditional on being event-free at the 

beginning of Δt. The hazard is thus a conditional probability per time unit: 

 

 
Figure 6.1: the hazard is the probability of experiencing the event at Δt, given that the individual is alive at the 

beginning of Δt. 

 

Proportional hazards assumption 

In a Cox proportional hazards model, we assume that the hazard ratio is constant over time. 

This means that hazards should be proportional over time. This assumption can be tested, 

which is shown in paragraph 6.2. The baseline hazard function does not need to be specified 

and can be any shape as shown in figure 6.2. 

 
Figure 6.2: The baseline ln(hazard) function and the proportional hazards assumption. 
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The hazard ratio is calculated by taking the exponent of the β (𝐻𝑅 = 𝑒𝛽). As seen in Figure 

6.2 the β is independent of the shape of the hazard function and of time.  

 

Non-proportional hazards 

A possible problem in Cox PH regression is violation of the proportional hazards assumption. 

As can be seen in Figure 6.3 the HRgroup B vsGroup A is below 1 at the beginning of follow up and 

above 1 at the end of follow up. It makes no sense to estimate a HR over the whole time 

period.  

 
Figure 6.3: Nonproportional hazards Source: Concato et al, Ann.Intern. Med. 1993 

 

There are several options when the proportional hazards assumption is not met: 

-fit time-specific models and thereby calculate time-interval specific hazards.  

-stratify on the variable with non-proportional hazards 

-include time dependent covariates. 

 

The Cox proportional hazards model 

 

The hazard at time=t is a product of the baseline hazard function (h0(t)) and the exponential of 

the covariates (X’s) and the regression coefficients (β’s): 

 

ℎ(𝑡) = ℎ0(𝑡)𝑒  𝛽1𝑋1+ 𝛽2𝑋2+ 𝛽3𝑋3+⋯+ 𝛽𝑘𝑋𝑘 
.  

The baseline hazard function (h0) is not specified, which makes the Cox PH model a semi-

parametric model. The baseline hazard function does not need to be specified to estimate the 

hazard ratio, because the baseline hazard cancels out of the equation. 

 

Consider the HR of females vs males: 

 

ℎ𝑎𝑧𝑎𝑟𝑑𝑚𝑎𝑙𝑒𝑠(𝑡)    = ℎ0(𝑡)𝑒  𝛽1𝑋1 = ℎ0(𝑡)𝑒  𝛽1∗1 = ℎ0(𝑡)𝑒  𝛽1 

ℎ𝑎𝑧𝑎𝑟𝑑𝑓𝑒𝑚𝑎𝑙𝑒𝑠(𝑡) = ℎ0(𝑡)𝑒  𝛽1𝑋1 = ℎ0(𝑡)𝑒  𝛽1∗0 = ℎ0(𝑡)𝑒  0 

 

𝐻𝑅 =
ℎ0(𝑡)𝑒  𝛽1

ℎ0(𝑡)𝑒  0
= 𝑒  𝛽1 
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6.2* The proportional hazards assumption 

 

We would like to estimate the HR of females vs. males for melanoma survival, but we need to 

check the proportional hazards assumption first. There are multiple ways of checking the 

assumption: 

 

-Visually using logminuslog (LML) survival plots 

-Goodness of fit test using Schoenfeld residuals.  

-Time-dependent covariates 

 

The easiest way is to use LML survival plots for categorical variables. You don’t need to 

perform all methods. Schoenfeld residuals and time-dependent variables can be used for 

continuous covariates. Combine an overall goodness of fit test, such as Schoenfeld residuals, 

with a visual inspection of LML plot.  

 

Step 1: Perform the Cox PH model in SPSS 

 

Analyze > Survival > Cox Regression 

 

Specify the survival time variable, the censoring/failure variable. Define the value of the 

event. Sex is the covariate. Change the reference category to the first value, using 

‘categorical’. Ask for LogMinusLog (LML) plots by sex. Go to ‘Save’ and save the partial 

residuals (Schoenfeld residuals).  

 

 

 
 

Step 2: Inspect the LML survival plot 

 

This is the easiest way to check the assumption. There is no evidence that the LML survival 

plots cross each other in time. They run perfectly parallel. 
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Step 3: Test the PH assumption using Schoenfeld residuals. 

 

This is 3-step process: 

1. Obtain Schoenfeld residuals 

2. Rank failure times 

3. Test the correlation between residuals and failure times. 

The null hypothesis is that there is no correlation between the residuals and the failure times.  

 

The Schoenfeld residuals have been saved in the variable PR1_1, which should have appeared 

in the dataset. Select all patients with the event (status=1): 

 

Data > Select cases  

 

Rank the survival time 

 

Transform > Rank Cases 

 

Move survtime  to the variable box. By default 1 is already assigned to the smallest value. A 

new ranking variable appears in the data ‘Rsurvtime’. 

 

Correlate the Schoenfeld residuals to the rank of the survival time 

 

Analyze > Correlate > Bivariate 

 

The Pearsons correlation coefficient is 0.043, with a p-value of 0.298. The null hypothesis is 

not rejected, thus we can conclude that the hazards are proportional.  

Don’t forget to turn the filter off.  

 

Step 4: Test the PH assumption by using time-dependent covariates. 
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We assume that the HR is equal over time. Including a variable in the Cox PH model which 

describes the change of the HR over time should have a regression coefficient of 0.  

 

First we need to calculate a new variable of the product of (a function of) time and the 

covariate. Usually time or LN(time) are commonly used choices.  

 

Transform > Compute variable 

 

Make a new variable ‘LNtime_sex’ which is the product of LN(survtime) and sex. Include 

this variable in a new Cox PH regression model and test if the β of this variable is equal to 0. 

 

Analyze > Survival > Cox Regression 

 

Specify a Cox PH regression model with sex and the LNtime_sex as covariates 

 

 
 

The p-value of the time-dependent variable is <0.001, which indicates that the proportional 

hazards assumption is violated. However, a disadvantage of this method, is that the 

significance depends on the choice of the function of time, which may lead to different 

conclusions. Moreover, a small deviation in a large dataset (n=592) may lead to a statistical 

significant deviation of the PH assumption, which may not be clinically relevant.   

 

6.3* Univariable Cox proportional hazards regression 

 

Based on the LML survival plot we conclude that the PH assumption is fulfilled.  

 

6.3 What is the hazard ratio (HR) of females vs males of melanoma survival? 

 

Analyze > Survival > Cox Regression 

 

In addition to the model in paragraph 6.3, ask for 95% CI of Exp(B). 

 

 
 

From the output we obtain a HR of females vs males of 0.463 (95% CI: 0.393-0.545). 

Females are thus at lower risk of death compared to males.  
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6.4* Multivariable Cox proportional hazard regression 

 

One could reason for the better survival of females, could be because women pay more 

attention to their skin and present clinically with lower stage tumours. Using our data, we can 

verify if this is true or not: we can make a multivariable model including sex, but also the 

stage variables. In this way, the data is ‘corrected’ for stage. 

 

6.4 Is the better survival of females caused by lower stage at diagnosis? 

 

Perform a multivariable Cox PH regression model including sex, Breslow thickness, Nodal 

stage and Metastatic stage. Do not use pT pN and pM as these are string variables. Breslow 

thickness is equal to pT and is already a continus variable. Recode the other stage variables.  

 

Transform > Recode into different variables 

 

RECODE pt ('1'=1) ('2'=2) ('3'=3) ('4'=4) INTO T_stage. 

VARIABLE LABELS  T_stage 'T_stage numeric'. 

VALUE LABELS T_stage 1 'T1' 2 'T2' 3 'T3' 4 'T4'. 

EXECUTE. 

 

RECODE pn ('0'=0) ('1'=1) ('2'=1) ('X'=0) INTO Nodal_status. 

VARIABLE LABELS  Nodal_status 'Nodal stage numeric'. 

VALUE LABELS Nodal_status 0 'No nodal metastasis' 1 'Nodal metastasis'. 

EXECUTE. 

 

RECODE pm ('0'=0) ('1'=1) ('X'=0) INTO Distant_metastasis. 

VARIABLE LABELS  Distant_metastasis 'Distant metastasis numeric'. 

VALUE LABELS Distant_metastasis 0 'No distant metastasis' 1 'distant metastasis'. 

EXECUTE. 

 

Analyze > Survival > Cox Regression 

 

Use sex, T-stage, nodal and distant metastasis as covariates. The LML should be checked for 

T-stage, nodal and distant metastasis.  

 

 
 

The HR for sex is still statistically significant after adjusting for stage at diagnosis. We can 

conclude that the survival advantage of females is not caused by lower stage at diagnosis. 
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6.5* Time-varying covariates 

 

Covariates which are known at time of diagnosis may change during follow up time. Other 

variable do not change (e.g. sex) and are called time-fixed covariates. Some covariates, such 

as drug exposure can be analysed as a time-fixed or a time-varying covariate in time-to-event 

analyses. The use of a time-fixed covariate assumes that exposure is measurable at baseline 

and remains constant over time (e.g. drug user at diagnosis yes/no). Changes in exposure 

status during follow up can be taken into account by using a time-varying covariate for 

exposure (e.g. drug user after diagnosis yes/no). Incorrect use of a time-fixed exposure 

variable in a Cox proportional hazard (PH) model, or other time-to-event models, can lead to 

biased estimates, due to immortal time bias. Samy Suissa wrote some excellent papers about 

this subject.   

In this example drug exposure will be analysed correctly as time-fixed covariate (6.5a). In that 

case only drug use at diagnosis or before diagnosis can be taken into account. Subsequently 

drug use will be analysed while changing over time (6.5b).  

 

Time-fixed covariate 

Betablockers may have a survival advantage by preventing melanoma metastasis. Betablocker 

use has been assessed at the date of diagnosis.  

 

6.5a Does betablocker use before diagnosis prolong survival among melanoma patients? 

 

Step 1: Perform a Cox PH regression for drug exposure before diagnosis 

 

Analaze > Survival > Cox Regression 

 

Adjust the analysis for age, sex and all TNM variables.  

H0: the regression coefficient for betablocker use before diagnosis is equal to 0.  

 

Step 2: Interpret the output. 

 

The HR is 1.097 (95% CI: 0.909-1.323) with a p-value of 0.336. The null hypothesis can thus 

not be rejected. Adjusted for possible confounders betablocker use before diagnosis does not 

influence survival. This may not surprise you, as patients may start using betablockers after 

diagnosis as well, who have been analysed as a non-user in this analysis. It would be more 

close to reality to take them into account as a non-user until they start with betablockers and 

analyse them as betablocker user afterwards. This will be done in the next analyses.  

 

Time-varying covariate.  

The variable BB_start_after_diagnosis indicates when patients started using the drug after 

diagnosis.  

 

6.5b: Does betablocker use after diagnosis prolong survival among melanoma patients? 

 

Step 1: Make a crosstab between betablocker use before and after diagnosis.  

 

Analyze > Descriptive statistics > Crosstabs 
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This table shows you that some patients who did not use the drug before diagnosis, started 

using the drug after diagnosis, at day 30, day 90, day 180, day 365 or day 730. All patients 

who used the drug before diagnosis continued after diagnosis and are users since day 0 

(baseline=diagnosis). In the case processing summary you can see that 81.4% have a missing 

value on this variable. These are the non-users.  

 

SPSS creates an internal time value T_, which can be used to define time-varying covariates.  

The patient who is a non-user at diagnosis and start using betablockers at day 18. This patient 

should get a value 0 (non-user) before day 18 and after day 18 the value 1 (user).  

 

Expressed in syntax: 

DO IF T_ > start_date_after_diagnosis. 

COMPUTE BB_user=1. 

ELSE. 

COMPUTE BB_user=0. 

END IF. 

EXECUTE. 

 

The non-users should not have a missing value, because they will be excluded from the 

analysis. You can use trick to assign the value 0 to the non-users. They should get an 

extremely high value, e.g. 1,000,000 days, which is higher than the max. follow up time. The 

max. follow up time in our data is 5393. T_ will never exceed 5393, thus a patient who has a 

value of 1,000,000 days will be assigned the value 0 in any case according to the 

aforementioned syntax.  

 

Step 2: Assign the value 1,000,000 to the non-users after diagnosis.  

 

Create a new variable to prevent mistakes: 

 

DO IF  MISSING(BB_start_after_diagnosis). 

COMPUTE BB_time_var=1000000. 

ELSE. 

COMPUTE BB_time_var=BB_start_after_diagnosis. 

END IF. 

EXECUTE. 
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Step 3: Perform the Cox PH regression using time-varying covariate for drug use.  

 

Analyze > Survival > Cox w/Time Dep Cov 

 

 
 

First, the time-dependent covariate has to be created.  

T_>BB_time_var  

is equal to  

DO IF T_ > start_date_after_diagnosis. 

COMPUTE BB_user=1. 

ELSE. 

COMPUTE BB_user=0. 

END IF. 

EXECUTE. 

In words: a value 1 is returned at the moment a patient becomes a betablocker user. Before 

that time or if the patient doesn’t use betablockers at all, a value 0 is returned.  

 

Now go to model. Subsequently you see a familiar Cox Regression screen. T_COV is the time 

dependent covariate that we just created. Include this in the model, together with age, sex, and 

the TNM variables.  
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Important! The timescale of the time-varying covariate should be equal to the timescale of the 

time variable used for the Cox analysis. (eg. both days or both years).  

 

Step 4: Interpret the output.  

 
 

T_COV is the binary time-dependent covariate for beta-blocker use after diagnosis (yes/no). 

The HR is 1.107 (95% CI 0.919-1.334), which is almost equal to the results of the time-fixed 

covariate analysis. The conclusion remains that betablocker use has no effect on survival.  
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How would you test the proportional hazards assumption for this time-dependent covariate. 

The solution can be found in the syntax file.  
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Suggested Readings: 
 

Books 
Petri A and Sabin C (2009), Medical Statistics at a Glance (easy, statistics) 

Field A (2013), Discovering statistics using IBM SPSS statistics (easy, SPSS) 

Katz MW (2011) Multivariable analysis: a practical guide for clinicians. (easy, multivariable 

analysis) 

Harrell FE (2001) Regression modeling strategies: with applications to linear 

models, logistic regression, and survival analysis. (advanced, regression analysis) 

Steyerberg EW (2009) Clinical prediction models: a practical approach to 

development, validation, and updating. (advanced, prediction modeling) 

Kleinbaum DG and Klein M (2012) Survival analysis, a self-learning text (easy, survival 

analysis) 

 

Website 
Institute for Digital Research and Education. Statistical computing: http://www. 

ats.ucla.edu/stat (easy, output SPSS, STATA, SAS) 

 

Articles 
Wakkee M, Hollestein LM, Nijsten T (2014), Research Techniques Made Simple: 

Multivariable Analysis, JID (easy, multivariable analysis). 

 

The Statistical Analysis and Methods in the Published Literature (SAMPL) guidelines, 

available from www.equator-network.org  

 

Hollestein LM, Nijsten T (2015), Guidelines for statistical reporting in the British Journal of 

Dermatology, BJD 2015 Jul 173(1): 3-5 

 

http://www.equator-network.org/
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