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Introduction

This is an introduction into SPSS and data analyses. You will learn some basic functions for
data exploration, data editing and simple inferential statistics. Thereafter an introduction to
regression analyses and survival analyses will be presented. Each chapter starts with a
combination between theoretical explanation and practical instructions, which you can
perform simultaneously. We suggest to read this carefully and perform the accompanied
syntax examples. At the end of each chapter you will find assignments on each topic, which
you should be able to make with the information from the chapters. Syntax files with the
correct solutions will be provided and don’t hesitate to ask for help from the tutors.

Italic text indicate where you can find the function in the SPSS menu, e.g.:
Analyze > Descriptive Statistics > Descriptives

Capitals indicate SPSS syntax statements, e.g:
RENAME

In boxes you can find background information on statistical formulas, e.g.:

ln(OddS) = ’BO + BlXI + ﬁZXZ + ﬁ3X3 + -+ ﬁka

@ If you dislike statistical formulas you can skip the information in the box, because it
will be described without formulas in the text as well.

Chapters or paragraphs with an asterisk (*) indicate advanced topics in data-analysis.

Loes Hollestein
Marlies Wakkee



Schedule

Day Beginners Advanced
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(if time left)
Monday Chapter 1 1-1 Chapter 2 1-12-1
Chapter 3

Tuesday Chapter 2 2-1 Chapter 3 3-1, 3-2
Chapter 3.1 - 3.4 | 3-1 (questions 1-3) | Chapter 4 4-1, 4-2

Thursday Chapter4.1-4.3 | 4-1 Chapter 5 5-1
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Chapter 1 Exploring SPSS

Dataset: SCC

Patients with a primary cutaneous invasive squamous cell carcinoma were registered. In this
database you will find information about the patients age, sex, year of diagnosis and tumor
characteristics, such as stage according to the tumor node metastasis (TNM), body site of the
tumor according to the International Classification of Disease for Oncology (ICD-O). All
SCC (both first and subsequent SCC) are included for the dataset.

SPSS Screens
SPSS has different screens in which you can work:
Variable view and data view of the data editor, the Syntax Editor and the Output.

Screen Function Files

Data editor Data management and starting statistical .sav
procedures
Variable view & Data view

Output Representation of outcomes of statistical .Spo
procedures (tables and figures)

Syntax Editor Save and edit SPSS syntax or execute SPSS .Sps
procedures by ‘running’ the syntax

Copy the data

Make a copy of the dataset before you start working with your data in SPSS. Save the raw
datafile and perform the data exploration, editing and analyses in a copy of the original
datafile.

1.1 Open a dataset

la. Import the data from excel

File > Open > Data
Select Excel (.xIs) from the picklist, Select SCC and click on open.
Select the worksheet ‘SCC 2011’ from the picklist. The first row of the excel worksheet
contains the variable names, which are copied automatically by SPSS. If correctly opened,
close the dataset again.




1b. Open a SPSS datafile ‘SCC’
In this file are variable labels and values are already assigned.
File > Open > Data

1.2 Syntax

During this practical you will also make a syntax. It is important to save the syntax, so that
you can always look up which analyses you performed in the past. To save the syntax in the
syntax editor you should click on ‘Paste’ instead of ‘OK’ or copy the syntax from the output
screen (Click on Copy with the right mouse button, Ctrl+C doesn’t work).

Between an asterisk (*) and a dot (.) you can type notes.

To run the syntax: select part of the syntax and click on the ‘Run selection’ button.

>

2a. Open a new syntax file
File > New > Syntax

1.3 Unique patient identifier

Mistakes can happen with the construction of a database. It is important to assign a unique
number to each patient. In this way you can check if patients are entered multiple times into
the database. This could be by mistake, but it could also be that a patient has multiple record
in case of multiple tumors. A unique patient identifier can also be used to link a patient
database to another database which contains information about the patients.

3a. check for duplicate cases
Use the patient number and year of diagnosis, because patients can have multiple tumors.
Do not forget to save the syntax!

Data > Identify duplicate cases > Define matching cases by Patient and Year
x|

Define matching cazes by:

Gﬁ Sex [Sex] & Patient number [patiert]

‘g& Age st diagnosis [Age] qﬁ Year of diagnosis [Year]
.g& Stage [stage]
gf) Subsite according to1C... Sort within matching groups by
;[i 95+ 5 yrs age cat [age...
g& Fictive distribution of la... «

Sort

Mumber of matching and sorting variables: 2
Watiahles to Creste

-( Indicator of primary cases (1=unigue or primary, O=duplicate)

@ Last case in each group is primary
- Matne! |PrimaryLast

@ First case in each group iz primary
_ Fitter by indicator values

| Sequertial court of matching case in each
group (O=nonmatching case)

-{ Move matching cases to the top of the file

-{ Digplay frequencies for created variables

(ox ) () (2= (Ganeet) ()




In the output you can see that there are 2 duplicate cases. Go to data view and you can see the
duplicate cases at the top of your dataset. Duplicate cases have the value 0 for the PrimaryLast
variable. Use this variable to delete duplicate cases. Never delete them yourself, because you
can make a mistake.

3b. Delete duplicate cases safely.
Data > Select Cases

There are 5 options to select the cases:

-All cases

-Based on a satisfied condition

-A random sample of all cases

-Based on a range

-Using a filter variable.

There are three options for the output:

- Filter out unselected cases (Recommended)
- Copy selected cases to a new data sat

- Delete unselected cases

For this assignment: fill in If condition is satisfied PrimaryLast=1 and delete unselected cases.
In most situations delete unselected cases is not recommended, because you cannot undo this
action. It is better to use ‘filter out unselected cases’, because you can change the selected
cases if you made a mistake.

1.4 Data Type

Variables can be numerical or categorical. Numerical data can be subdivided in to discrete
variables, which are count data (e.g. like number of seizures) or continuous variable, which
can be any value in a range (e.g. age). Categorical data can be subdivided in nominal
variables. These categories have no order (e.g. blood type). Ordinal variables are ordered (e.g.
disease severity as measured by TNM stage).

In SPSS you can define the variables in Variable View by using data Type and Measure. For
example, age can be numeric and Scale (any value from 0 to 100), age category can be
numeric and ordinal (1=0-4 yrs, 2=5-9 yrs etc.) or age can be string and ordinal (‘young’,
‘middle aged’, ‘old’). For a categorical variable you can enter a label for each value. See the
example for sex on the next page.

Renaming variables, labeling variables and values is not recorded in a syntax if you perform
this actions in variable view. Use the RENAME, VARIABLE LABELS and VALUE
LABELS statements in the syntax to save these changes. An example of these statements is
shown in Chapter 1.6.




=10l x|

«af *SCC.sav [DataSet1] - PASW Statistics Data

Fil=  Edt ‘“iew Data  Transform  Analyze  Graphs  Utiities  Sdd-ons  Window  Help

CHA T 00 =Rk & s S6E 0% %

Name | Type | Width | Declma\5| Lahel ‘ Values Missing Columns Align | Measure |
1 patient MNumeric 8 1] Patient number None None 10 = Right & Scale |4
2 Sex MNumeric 1 1] Sex 11, man} None | = Right & Morninal
3 Year MNurneric 4 1] Year of diagnosis None None | = Right & Morninal
4 Rank Murneric 2 o Tumor Sequence Mane Mane 8 = Right & Scale
5 Age Murneric 2 1] Age at diagnosis Mone Mone 8 = Right & Scale
B stage Murneric g 2 Stage {100, 1}, Mone 10 = Right & Scale
7 subsite_ICD  Numeric g 1] Subsite according to ICD {0, Lips}.. None 10 = Right &> Mominal
g vitalstatus Mumeric 1 o Wital status 11, alive}.. None g = Right & Mominal
9 days_alive Mumeric 4 o Mumber of days alive after diagnosis  Naone None g = Right & Scale
10 agecatds MNumeric g 2 95+ 5 yrs age cat {1.00,0-4}...  None 10 = Right Al Ordinal
" B
E falue Lahels
7 vaw [ [ syetng.. |
15 Label. | |
16 1 ="man"
17 2 = "weoman"
18
19
20
2
Z Ok || Cancel H Help
23
24 -
1] D

Data Wiew | Wariable View

PASW Statistics Processor is ready

Always fill in the label and the values! This is necessary for your collegues to understand
what is in the dataset or for yourself, because if you didn’t work with the data for a long
period of time you do not remember the meaning of variables and values.

1.5 Explore continuous data

Before you start with data analyses, you explore the dataset. In this way you get a grasp of the
distribution of the data, you can check the data for outliers, or you can check assumptions.

1.5a. Explore the variable age.
Analyze > Descriptive Statistics > Descriptives
Obtain standard measures, like mean, standard deviation, median, interquartile range etc.

Analyze > Descriptive Statistics > Explore
More elaborate than descriptives. Obtain measures by category by transferring the category
variable to Factor list. Obtain plots and test for normality (for explanation see below)

1.5b. Test if age is normally distributed.
In a linear regression analyses the outcome should be normally distributed. You can check
this assumption graphically by plotting a histogram with a normal curve

Graphical check

Analyze > Descriptive Statistics > Frequencies
Transfer age to the ‘Variable(s)’ box. Go to Charts and click on histogram with normal curve
In the Statistics menu of frequencies you can find handy statistics, like quartiles or percentiles

Statistical test for normality and Quantile-Quantile (Q-Q) plots
Analyze > Descriptive Statistics > Explore > Plots > Normality plots with tests



The normality assumption can be statistically tested using the Shapiro-Wilk test or visually
inspected using a histogram and a Quantile-Quantile (Q-Q) plot. The Shapiro-Wilk test
performs better than the Kolmogorov-Smirnov test to test for normality. The null hypothesis
is: ‘the variable is normally distributed’. A p-value < 0.05, thus indicates violation of the
normality assumption.

The idea of a Q-Q plot is to calculate the expected value for each data point based on the
normal distribution. The observed value is plotted against the expected normal distribution. If
the datapoints are on the diagonal, this implies normality. Deviation from this straight line
indicates that the normality assumption is violated.

1.5c. Make a boxplot for age by sex.
To display the spread of the data you can make a boxplot.
Graphs > Legacy dialogs > Boxplot > Simple

JDeﬁne Simple Boxplot: Summaries for Groups of Cases _I
Wariable:
— — Options. ..
&5 Year of disgnosis [Year] + ‘f Age st disgnosis [Sae] | |7|
f Tumor Seguence [Rank] Categary Suxis:
f Stage [stage] - &5 e [Sex] |

&5 Subsite according to 1CD [s...
& vital status [vitalstatus] |
f Mumbet of days alive after ...

d:l 95+ 5 yrs age cat [agecat3s] Panel by

Label Cazes by :
| Patierit number [patient] |

Rowes:

-»

Columns:

| QK J| Paste || Reset || Cancel || Helgp |

Fill in the continuous variable and by which variable you would like to group the cases at the
category axis. You can label cases by their patientnumber. In this way it is easy to identify,
which patient has a strange value for age.
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Age at diagnosis

1259

100+ -

Interquartile
751 range

v

Age at diagnosis

507 385

591 ! 263
254

664

83 P
238842 5583529 -~
530
97 =

<+— Median

| 95% central range

T T
man woman

Sex

1.6 Explore categorical data

1.6a. Make a frequency table for stage.
Analyze > Descriptive Statistics > Frequencies

Display the frequencies for each value. You can also make a pie chart. You can check if the
distribution among the stages is logical. Indeed, most SCC’s are diagnosed in stage I. You can
also identify errors in the variables with this function. Stage 11 doesn’t exist. This is probably
a stage 1 tumor, but you should always try to go back to the patient files to check this before

you fill in a new value.

Statistics
Stage
M Walid 1016
Mizsing 2
Stage
Cumulative
Frequency | Percent | Valid Percent Percent
Valid 1 734 72,1 722 722
2 67 6,6 6,6 7ag
3 11 1.1 1.1 79,9
4 1 1 1 80,0
Unknown 200 19,6 19,7 99,7
11,00 3 3 3 100,0
Total 1016 LR 100,0
Missing 599,00 2 2
Total 1018 100,0

11



1.6b. Discrete Missing values.

Stage information is missing for 2 patients. This was entered into the database as the value

999.

Go to variable View. Go to the ‘Missing’ column on the stage row and check the box ‘No

missing values’. Make a frequency table again:

Now you can see, that SPSS doesn’t recognize the missing value. Go back to Missing and fill
in ‘999’ in the ‘discrete missing values’ box.

Statistics
Stage
N Yalid 1018
Missing 1]
Stage
Cumulative
Freguency Fercent | Walid Percent FParcent
Valid 1 T34 721 72,1 721
2 67 6,6 6,6 8T
3 11 11 11 T8
4 1 A V1 7oA
LInknoin 200 19,6 19,6 99 5
11,00 3 3 3 99 8
999,00 2 2 2 100,0
Total 1018 100,0 100,0

1.6¢. Correct the stage values.
Assuming that you checked the patient files, stage 11, should have been stage 1. To change

the values, use the following syntax. In this way, you or your collegues can always retrieve
what has been changed.

DO IF stage=11.
COMPUTE stage=1.
END IF|

EXECUTE.

To check if the changes were successful, sort the cases in descending order:

Option 1: Data > Sort Cases

Option 2: Go to data view. Click with the right mouse button on the stage heading and
sort descending.

1.6d. Make a Crosstab
To check the stage distribution by sex, you can make a crosstab:
Analyze > Descriptive Statistics > Crosstabs
Fill in Stage as row and Sex as column variables. Go to “Statistics’ and tick the box for the
Chi-square test.

12



Stage * Sex Crosstahulation

Count
Sex
man WiOTEn Total
Stage 1 438 2498 737
2 44 23 67
3 8 3 11
4 ] 1 1
Lnknowen 114 a6 200
Tatal 605 411 1016

Three cells contain less then 5 subjects. If you find less then 5 subjects in one cell you should
perform the Fisher’s exact test, because the Chi-square test is not reliable with a low number
of subjects in one of the cells. Go back to crosstabs and go to ‘Exact..” to check the option
‘exact’. Do not forget to limit the time (1 minute), because the calculation for a Fisher’s exact
test can take a while.

Chi-Square Tests

Asvmp. Sia. Exact Sig. (2- Exact Sig. {1- Faint

Walue of (2-sided) sided) sided) Frohahility
Pearzon Chi-Sguare 3,84742 AT 430
Likelihood Ratia 4,243 a74 428
Fisher's Exact Test 3,657 A4z
Linear-by-Linear A1gb 1 A7 A7z 239 JO06
Association
M ofValid Cases 1016

a. 3 cells (30,0%) have expected count less than 9. The minimum expected countis 40,
h. The standardized statistic is ,720.

The p-value obtained by the Fisher’s exact test is 0.442. The null hypothesis for a chisquare
test and the Fisher’s exact test is as follows: the proportion of subjects for each stage is equal
in the two groups. We can conclude that the proportions are equal.

Be aware when you interpret the result of a chi-square test with multiple groups. The null
hypothesis is: the proportion of subjects for each category is equal in the three (or more)
groups. So from a significant p-value for the chi-square test you can only conclude that the
proportion is not equal, but you cannot conclude between which two groups there is a
difference.

1.7 Data editing

Compute a new variable

Laboratory values can be right skewed. To normalize right skewed data you can log
transform this variable.

Transform > Compute variable

13



i Compute variable =

F|I| |n neW Target Watiable: Mumeric Expression:
. LN_age = hcege)|
variable name —
[ Tpesiobe. | The computation
& Patient number [pstient) *
%Sex [Sex] Functi "
&;Year of disgnosis [Year] p— —— ;::1 (OEREE N )
& Tumor Seqence [Ren] L ] L] A <«—— Function groups
& Age at disgnosis [Age] N @l ER El cEll =
% S (o L= [=]l=] 2] =][=] COF & Noncentral COF
&; Subsite according to 1C... |*_‘ |T| |:| |1_‘ ‘T| |T‘ znnvi;s:atn -
& Vital status [vitalstatus] = == == = D;"EA h ;'me =
&Number of days alive af .. |L‘ |i| ||_| | o ||_‘ = At
e e ol Eunct] o Specizl Yariabl
giisws age cat [agec | ‘ | r ” (J| | T ‘ | > | i{l (02 i S i
_age — o I
Arsin
LMCrumexpr). Mumeric. Returns the base-g logarithm of Artan
numesxpr , swhich must be numeric and greater than 0. Cos y
. . E: i .
Explanation of the function |, < Function
Ln -
Lngamna
od

If... |EﬂpﬁDnal case selection concition) Rnd(1] L
Rnd(2) b
/ oK J | Paste | ‘ Reset | | Cancel | | Help

Fill in if the new variable
should be created for
only part of the cases

1.7a. Plot the lab values, log transform the lab values and make a new histogram:
Graphs > Legacy Dialogs > Histogram

Use Lab_value as variable. You can also tick the box ‘Display normal curve’. ‘You can also
obtain a histogram by using the chart builder (explained in paragraph 3.1).

Graphs > Chart Builder

GRAPH
HISTOGRAM=Lah_value,

COMPUTE LN_lab_value=LG10(Lab_valug).
EXECUTE.

GRAPH
HISTOGRAM=LNM_lab_value.

Log transformations are only effective for right skewed data. Age was not normally
distributed, but a little left skewed. Log transformations make left skewed data even more left
skewed.

_/\ Mo Skew

Right skewed (positively skewed)

Left skewed (negatively skewed)
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1.7b.Repeat the syntax for age

Recode
Transform > Recode
There are three options for recoding data, which you can find in the Transform menu
-Recode into the same variables
-Recode into different variables
-Automatic recode

| advise never to use Recode into the same variables, because you will lose your original data.
Automatic recode recodes numerical and string variables into a new numerical variable. The
value labels will be automatically displayed in ‘Values’ in variable view.

You can choose you own new categories with ‘recode into different variables’. This is the
recommended function for recoding variables.

1.7c. Recode age in two new categories ( < 65 years and > 65 yrs)

Transform > Recode into different variables
Transfer age at diagnosis to the ‘Numerical variable -> output variable’ box. Fill in the new
variable name and click on ‘change. Go to ‘Old and New Values’.

|

Mumeric Yariable -= Output Varishle: Output Variable
& Patient number [patiert] Age > Agefis
&) Sex [Sex] Mame:
&) Year of disgnosis [Year]
f Tumor Sequence [Rank] Letach
& stage (tace] — [ ]
&) Subsite according to 15... ‘i‘ |W|
& ital status [vitalstatis] —
eg& Mumber of days alive af...
d:l 95+ 5 yre age cat [agec. .
f Lab_walue
& test
& tests | Ol and Mew Yalues. .. |

| If... |(optional caze selection condition)
| Ol _J | Paste | | Reset | | Cancel | | Help

2| Recode into Different Yariables: DId and New ¥alues x|
0ld Value New Value
() Walue: (3) Walue: |2| |

() System-missing

() System-missing @ Gyl vl

(") System- or user-missing

= Cldd = Mew:

(- Renge: Lowest thru 64 > 1

() Range, LOWEST through value:

(%) Range, value through HGHEST:

|:| Output variables are strings

(1 Al ather values

| Cortinue _“ Cancel || Help
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Fill in the old values, the new value and click on add. Do not forget to label the new values in
the variable view screen or use the following syntax for labelling:

Variable labels ageb5 'Age below or above BS yrs'.
Value labels Ageb5 1'<B5 yrs' 2= 65 yrs'

Sort data
Data > Sort cases
Patients can have multiple tumours, which were diagnosed in different years.

1.7d. Sort cases by patient number and year of diagnosis:

SORT CASES B patient(A) Year(4).

Rank cases

1.7e. Make a new variable which indicates the sequence of the tumours
Transform > Rank cases

You would like to rank year of diagnosis by patient number

& Rank Cases x|

L&’) Sex [Tex] | i) | Rank Types... |
& Age st diagnosis 4. - &5 Year of diagnosis [Year] _:
ﬁ Stage [stage] | * | | Ties=... |
&)3 Subsite according to... |

&b Vital status [vitalztat... | -

Murmber of o li... i

& hunioer of days sl & Patient number [patient]

dj95+5yrs age cat [a... | |

ﬁ Lak_value = *

& naess b

Assign Rank 1to Display summary tables

(2 Smallest value

() Largest value

| [0].4 _J | Paste | | Reszet | | Cancel | | Help |

1.7f. Rename the variable which was created by the Rank cases function of SPSS.
Go to Variable view and rename the variable or use the following syntax:

RENAME VARIAELES (RYear=Rank).

Sort patient number ascending to check the result for patient number 4. Patients with only 1
tumor have only the value 1. Patient number 4 has 4 tumors and should have rank values 1, 2,
3 and 4. It may be convenient to put the variables next to each other.
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Select cases

Data > Select cases

1.7g. Select the first tumor of each patient.

You can select the cases if the rank is equal to 1 and filter out unselected cases.

43 Select Cases

& Patient number [patient]
&3 Sex [Sex]

&3 Year of diagnosiz [Year]
f Ane at disgnosis [Age]
f Stage [stage]

& Lab_value

& ngess

&) Subsite according to 12,
{I 95+ 5 yrs age cat [agec..

& Rank of Year by patient. ..

rSelect

X

() Al cazes
@) If condition iz satisfied

Feank = 1

O Fandom zample of caszes

| Sample... |

O EBazed on time or caze range

| Range... |

() Uze fiter variakle:

Bl

rOutpurt
@ Fittet out unselected cazes

O Copry selected cazes to a new dataset

Datazet name:

CJ Delete unselected cases

Current Status: Do not fiter cases

I Ok ][ Paste ][ Reset ” Cancel ][ Help

Result is shown on the next page.
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Result of the filter:

£ SCC.sav [DataSet1] - PASW Statistics Data Editor -8 x

Eile  Ecdit View Data Iransform  Anlyze Graphs  Uiiss  Addons  Window  Help

CEHE ® b LEBEF 4 A S6E ¥0% ¥

35 fiker_§ 1 Wizihle: 11 of 11 Variables
patient | Sex |  Year |  Age |  stage | subsite ICD agecatds Lab_value AgeB5 Rank filter_§ var \

2 2 2 U9 1 900 W00 1 T TI00 i 3

530 526 1 2001 B 100 3 10,00 1 1m 1000 1 |
531 527 2 2006 51 100 3 11,00 1 1m 1000 1
Py 528 2 2004 1 100 5 3,00 1 100 1,000 1
Y/ 5 529 2 1997 ] 100 3 800 1 1m 1000 1
| 529 2 1098 S 100 3 800 1 100 2,000 0
= 529 2 1939 0 100 3 800 1 1m 3,000 0
_mw | 529 2 2000 2 100 3 800 1 1m 2,000 0
529 2 2001 2 100 3 800 1 100 5,000 i
= 529 2 2002 3 100 3 800 1 1m0 7000 0
5| 529 2 2003 1 100 3 500 1 100 7,000 0
s | 529 2 2004 5 100 3 800 1 1m 7,000 0
_me | 529 2 006 % 100 3 800 1 1m 9,000 0
s 529 2 2006 7 100 3 800 1 100 10,000 0
543 530 2 1995 El 100 0 700 2 1m 1000 1
4 531 2 2005 4 100 3 15,00 1 200 1,000 1
545 532 1 2004 61 300 2 1300 1 1m 1000 1
546 533 1 006 7 100 4 16,00 1 2m 1000 1

547 534 2 2004 2 900 3 17.00 1 200 1,000 1 L

548 535 1 2004 50 100 3 11,00 1 1m 1000 1 E
549 536 2 2004 &0 100 & 17.00 1 200 1,000 1
560 537 2 007 91 100 & 19,00 i 200 1000 1
551 53 1 2005 69 100 3 1400 1 200 1000 1
552 539 1 2004 63 100 3 13,00 1 100 1,000 1
563 540 2 2004 69 100 3 1400 1 200 1000 1
564 541 1 2005 4 100 3 1500 1 20 1000 1
555 542 1 2004 84 100 3 17,00 1 200 1,000 1
556 543 1 2006 4 100 3 1500 1 200 1000 1
557 544 2 2004 52 100 5 19,00 0 200 1,000 1
558 545 2 2006 81 200 & 17,00 1 200 1000 1
559 545 1 2004 56 100 3 1200 1 1m 1000 1
560 547 1 2005 61 100 0 13,00 1 100 1,000 1
561 548 1 2006 2l 100 3 1500 1 200 1000 1
562 549 1 2005 73 100 4 15,00 1 200 1,000 1
563 550 1 2005 83 100 3 17,00 1 200 1000 1
564 551 1 006 2 200 3 19,00 0 2m 1000 1

565 552 2 2005 72 100 5 15,00 1 200 1,000 1 S

[ i I Io]

Data View | “ariahle iew

Syntax of the filter:

USE ALL
COMPUTE filter_§=(Rank = 1),

WARIABLE LABEL filter_$ Rank = 1 (FILTER)'
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected"
FORMAT filter_$ (f1.0).

FILTER EY filter 5.

EXECUTE.

In the syntax you can see, that SPSS first computes a filter variable, subsequently labels the
values and finally filters the cases by the filter variable. You can save this filter variable or
you can create your own filter variable.

USE ALL.

COMPUTE MNew _filter=(Age = B5 AND subsite_|ICD=R).

WARIABLE LABEL Mew filter Filter older then B5 and SCC on arms or shoulder’
VALUE LABELS Mew filter 0 Mot Selected' 1 'Selected”

FORMAT Mew_filter (f1.0).

FILTER B Mew _filter.

EXECUTE.

Don’t forget to turn the filter off!

FILTER OFF.
USE ALL.
EXECUTE.
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1.8 Export a data set

Some analyses can only be done or can be easier performed in other statistical package like
STATA, SAS or R. You can export a datafile in the correct format by using the Save As
option the the File menu. For SAS use the long extension (*.sas7bdat). If the format for your
package is not available in the picklist, save the data as a tab delimited file (*.dat) or a comma
delimited file (*.csv). These datafiles are usually easy to import into other statistical packages.

19



Assignment 1.1 Data exploration

Data: Skin cancer screening
Patients at risk for skin cancer received a full body examination. A questionnaire was filled in
by the patients to determine factors which increase skin cancer risk

Open the dataset ‘Skin cancer screening’ and check which variables are included.
1. ID is an unique patient identifier. Check for duplicate cases and delete possible duplicate
case by using a syntax (i.e. don’t delete duplicate cases by hand). How many duplicated cases

were there in the data?

2. Compute age at the date of screening by using birth date. Use a function from the ‘Date
Extraction’ function group.

3. Sort cases by ascending age.

4a. Many patients have missing values on their date of birth and as a consequence on age.
Discrete missing values for age with a non-existing age value, for example 999. Do not
choose 99 for missings, because patients can also be 99.

4b. Compute 999 for missing values on age. Use the IF option and use a function from the

‘Missing Values’ function group.

5a. Explore the variable age. Make a boxplot for age and check for outliers.
5b.Write down the casenumbers who have a strange value for age.

6a.How many males and females participated in the screening?
6b.Discrete missing values for sex and recalculate the frequency table

7. How many females older than 40, but younger than 61 participated in the screening?
Recode age to answer this question.

8. How many patients were diagnosed with at least one melanoma?
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Chapter 2 Simple Inferential Statistics

Data: SCC
The data used is this chapter is equal to the data in chapter 1, but in chapter 2 only the first
SCC is included.

The following figure is useful to determine which statistical test is needed to answer the
research question:

Fow chart for

Numerical
data

Lo [

s::;; U Paired \][[lndepuum;][[ Indq)uﬂu::]u lg'tup ]
t-m - 1 I - ~ ~ X\ A
' ) ([ U e
Wilcoxon Kkruskal- Sign test A =
rank sum Wallis test ” McNemar l Chi-
test s test Squlmed
Fisher’s
exact test

Figure 2.1: flowchart statistical tests

In the previous chapter you have learned about the different types of numerical and
categorical data. To use this figure you need to determine if you would like to compare the
mean or the distribution in 1 group, between 2 groups or more than 2 groups. You also need
to determine if data are paired (dependent) or unpaired (independent). Paired data means that
the outcome variable is measured in the same subjects twice. For example, the blood pressure
of a group of patients before and after the intervention. Unpaired data means that the outcome
variable is measured in different groups of patients. For example: the blood pressure of group
A (who received the intervention) and the blood pressure of group B (who received placebo).

Statistical Test

Numerical data
Parametric tests
One sample t-test
Paired t-test
Unpaired t-test
One way ANOVA

Nonparametric tests

Sign test

Wilcoxon signed rank test
Wilcoxon rank sum test/
Mann-Whitney U test
Kruskal-Wallis test

Location SPSS

Analyze > Compare means > One sample t-test

Analyze > Compare means > Paired samples t-test
Analyze > Compare means > Independent samples t-test
Analyze > Compare means > One way ANOVA

Analyze > Nonparametric tests >
Analyze > Nonparametric tests > Related samples
Analyze > Nonparametric tests > Independent samples

Analyze > Nonparametric tests > Independent samples
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Statistical Test Location SPSS

Categorical data

Z-test Obtain value for p from Frequencies

Sign test Obtain value for p from Frequencies

McNemar’s test Analyze > Descriptive Statistics > Crosstabs > Statistics > McNemar
Chisquare test Analyze > Descriptive Statistics > Crosstabs > Statistics > Chisquare
Fisher’s exact test Analyze > Descriptive Statistics > Crosstabs > Exact > Exact
Chis-squared trend test Analyze > Descriptive Statistics > Crosstabs > Statistics > Ordinal

2.1 Student’s t-test

A Student’s t-test is used to compare the means between two groups. For example, if you
want to compare the mean height between men and women. The t refers to the t-distribution,
which approximates a normal distribution with large sample sizes. There is a t-test for paired
and for unpaired data.

2.1a Research Question: is the age of the first tumor different between men and women?
Step 1. Determine which statistical test you need to answer this question and define the null
hypothesis (Ho).

Ho: the distribution of age is equal between men and women.
Step 2. Check the assumptions of the t-test:

The assumptions of the t-test are:

- Data is normally distributed

- Variances are equal (separate test is not needed, this is incorporated in the output of the t-
test)

You can check this by using frequencies or the Shapiro-Wilk test and Q-Q plots.

Analyze > Descriptive Statistics > Frequencies
Analyze > Descriptive Statistics > Explore > Plots > Normality plots with tests

Age was not completely normally distributed, but based on the histogram age can be regarded
as approximately normally distributed. If the sample size is large enough (ca. >30) then the
central limit theorem holds, even if the variable is not completely normally distributed. For
small sample sizes the Shapiro-Wilk test is recommended.

Central limit theorem:
~ O
X =N(u,—=)

Jn

Meaning of this formula:

The mean of a random variable ( X ) follows a normal distribution (N), with a mean value (u),
which is equal to the population mean with a standard deviation which is equal to the standard
deviation of the population (o) divided by the square root of the sample size (n).

This approximation becomes better if your sample size (n) is larger.

N
N




Step 3. Perform the unpaired t-test.

Analyze > Compare Means > Independent Samples t-test

Age is the test variable and sex is the grouping variable. Define the values of the groups.

,=;] Independent-Samples T Test
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TestVariable(s)

& Patient number [patient]
&5 Year of diagnosis [Year]
Jll stage [stage]

Jll 95+ 5 yrs age cat[agecatos]

&> Subsite according to ICD [subsite_ICD]

& Fictive distribution of lab values for illu... +

& Age at diagnosis [Age]

Grouping Variable:
[sext12)

Define Groups...

[ ok ]| Paste |[ Reset |[ cancel || Help |

,=:| Define Groups

® Use specified values

© Cut point:

[continue] | cancel || Hep |

T-TEST GROUPS=Sex (1 2)
/MISSING=ANALYSIS
SVARIABLES=Age
/CRITERIA=CI(.95).

T-Test

[Datafetl] X:A\DERM\Cverigh3S4000%Statistiek\EADV ESDR_summercourse\SCC.sav

Group Statistics
Std. Error
I Mean Std. Deviation Mean
Age atdisgnosis man a99 7271 11,725 474
WOrman 400 76,09 12,883 45
Independent Samples Test

Levene's Test for Equality of

Wariances test for Equality of Means
95% Confidence Interval ofthe
Difference
Mean Std. Errar
F Sig. 1 df Sig. (2-tailed) Difference Difference Lowver Upper

Age at diagnosis  Equal variances 4,974 026 -4,285 997 Jaan -3,377 788 -4,924 -1,83
assumed

Egual variances not -4,205 | 798,818 oo -3,377 803 -4,954 -1,801
assumed

Step 4. Interpretation of the output
In the first table you can see the number of subjects included in the analyses as well as the

mean, standard deviation (SD) and the standard error (SE).
SD=v§2=Square root of the variance (interpretation: variance in this sample)
=SD/Square root sample size (interpretation: variance of the mean if you would sample

5D
SE—W
multiple times)

First look at Levene’s test for equality of variances. The null hypothesis for this test is: The
variances of both groups are equal. A non-significant result means that the variances are equal
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and that you can use the output for equal variances assumed. The p-value in this analysis is
0.026, so we should look at the results for equal variances NOT assumed. The mean
difference is -3.377 years with a 95 % CI of -4.954 to -1.801. From the table with group
statistics you can calculate the same mean difference. The value 0 is not in the confidence
interval. 0 means no difference. Therefore you already know that the p-value is significant.
The significance (2-tailed) is 0.000. A p-value cannot be zero. This means that the p-value <
0.001.

2.1b Is the age of the first tumor different between men and women for each stage?
Perform the same t-test as for assignment 2.1a, but organise the output by stage.
Data > Split File

Check the box ‘Organize output by groups’ and transfer ‘stage’ to ‘Groups based on’.
Repeat the unpaired sample t-test.

SORT CASES EBEY stage.
SPLIT FILE SEPARATE BY stage.

Stage I: p-value < 0.001 and mean difference = -3.373 (95% CI -5.254 to -1.492)
Stage II: p-value = 0.026 and mean difference = -5.045 (95% CI -9.481 to -0.608)
Stage I1l: p-value = 0.473 and mean difference = -6.208 (95% CI -24.948 to 12.531)
Stage IV not calculated

2.2 Non-parametrical test

As you have probably noted, the sample size of stage Il is rather small to perform a
parametrical test (n=11). The non-parametrical equivalent of an unpaired samples t-test would
be more appropriate for this stratum. The non-parametrical test ranks all values and the test
statistic is based on the value of the ranks, rather than the true value of the measurements.

2.2 Is the age of the first tumor different between men and women for stage 111?

Step 1: determine the appropriate test

Use Figure 2.1: age is numerical data. We would like to compare 2 groups (men and women).
Men and women are independent groups. The sample size is small and age is not normally
distributed, thus a non-parametrical test is needed, which is the Wilcoxon signed rank sum
test.

Step 2: perform the test and define the null hypothesis.

Ho: The distribution of age is the same between men and women.

Menu > Non-parametrical tests > Independent samples

Choose to ‘customize analysis’ in the ‘Objective’ tab. Go to the ‘Fields’ tab and assign the
test variable and the groups in the ‘fields’ tab. Go to the ‘Settings’ tab and choose ‘Customize
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tests’. Choose ‘Mann-Whitney U test (2 samples)’, which is equivalent to Wilcoxon rank sum
test (Figure 2.1).

Objective tab Settings tab
.=;_3_| Nc&ara metric Tests: Two orM)ﬂ(pendent Samples é |
=z

Objective | Fields | Settings

© Use predefined roles
@ Use custom field assignments

Fields: TestFields:

Sort: |None = E . & Age at diagnosis
f Patient number

&b Year of diagnosis

,{I Stage

&5 Subsite according to ICD
gl 95+ 5 yrs age cat

f Fictive distribution of lab values for ... -

Groups:
-4 & sex

[b Run][ Paste ][ Reset ][ Cancel ][9 Help]

NPTESTS
/INDEFEMDENT TEST (Age) GROUP (Sex) MANN_WHITMNEY
MISSING SCOPE= USERMISSING=

/CRITERIA ALPHA=0.05 CILEVEL=95.

Stage =3
Hypothesis Test Summary
Null Hypothesis Test Sig. Decision
Independent-
The distribution of Age at diagnosis  Samples Retain the
1 isthe same across categories of ann- 4977 null
Sex. Whitney U hypothesis.
Test

Asymptatic significances are displayed. The significance level is 05.

1Exact significance is displayed for this test.

You can also use:

Menu > Non-parametrical tests > Legacy dialogs > 2 Independent samples
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The second option via legacy dialogs provides more information on the test statistic, which is

based on the rank of age, rather than the true value of each data point.

NPAR TESTS

/MW= Age BY Sex(1 2)

- MISSING ANALYSIS.

Stage =3

Mann-Whitney Test

Ranks®
Sum of
Sex M Mean Rank Ranks
Age atdiagnosis  man 8 5 66 44 50
waman 3 TAT 21,50
Total 11
a. Stage =13
Test Statistics™"
Age at
diagnosis
Mann-Whitney L 8,500
Wilcoxon W 44 500
z - 718
Asymip. Sig. (2-tailed) 473
Exact Sig. [2*(1-tailed o
Sig)] 497
a. Stage=3

h. Grouping Variable: Sex

c. Mot corrected for ties.

Step 3: Interpret the output.

The null hypothesis can be found in the output:

‘The distribution of age at diagnosis is the same across categories of sex’
You will receive the output for all stages, but only stage Il is shown in this chapter. The p-

value for stage 111 is 0.497. Thus, the null hypothesis cannot be rejected. There is no statistical

evidence that age is different between men and women for stage 111 SCC.

Do not forget to turn split file off!

SPLIT FILE OFF.

2.3 ANOVA

ANOVA means ANalyis Of Variance and this type of analysis is used to compare the means

of more than 2 groups. A one-way ANOVA compares the means by one grouping factor
(categorical variable).
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2.3 Is the age distribution different between the different body sites?
Step 1: Define the Null hypothesis
Ho: The mean age is equal across all categories of subsite.

Note: the result of the ANOVA will only tell you if there is a difference in age between the
categories, but not between which categories. Therefore multiple post hoc t-tests are needed
with a correction for multiple comparisons.

Step 2: Are the model assumptions fulfilled?

The model assumptions of ANOVA are:
-Normality
-Homogeneity of variances

For larger sample sizes, the normality assumption is not important. The homogeneity of
variances assumption is an important assumption of an ANOVA and can be tested using
Levene’s test of equal variances. The assumption can be tested in the ANOVA procedure,
thus a separate check beforehand is not needed.

Step 3: Perform the analysis
Analyze > Compare Means > one-way ANOVA

Put age in the dependent list and the grouping variable (subsite _ICD) is the factor. Go to
options and tick the box ‘descriptives’ and ‘homogeneity of variances test’. Also go to ‘post
hoc’ and tick the box ‘Bonferroni’. This is the most widely used correction for multiple
comparisons. The a-level should be divided by the number of comparisons to reach statistical
significance. For example, in case of 4 comparisons, the p-value should be below
0.05/4=0.0125 to reach statistical significance. This is equal to multiplication of the p-value
with the number of comparisons and significance at p <0.05 level.

iZ5 One-Way ANOVA: Options =

Statistics

[+ Descriptive

3 One-Way ANOVA 2 [T] Fixed and random effects
[¥/iHomogeneity of variance test
Dependent List: ::_'. Brown-Forsythe
& Patient number [patient] & Age at diagnosis [Age] =3
g e = wowr
&b Year of diagnosis [Year] -g ti .
ol Stage [stage] S ["] Means plot
d:l 95+ 5 yrs age cat [agecatds] Bogisliang Missing Values
g& Fictive distribution of lab values f...

@ Exclude cases analysis by analysis

+ Ee.n_ctor: © Exclude cases listwise
| & Subsite according o ICD [subsit.. |

[ oK ][Easte ][Beset][Cancel][ Help ] [Continue][ Cancel ][ Help ]
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Test of Homogeneity of Variances

Age at diagnosis

Levene
Statistic df1 df2 Sig.
1,041 8 980 A03
ANOVA
Age at diagnosis
Sum of
Squares df Mean Square F Sig.
Between Groups 6638,625 8 83298328 5,680 000
Within Groups 144634 148 980 146,085
Total 151272771 988

Step 4: interpret the result

First look at the test of homogeneity of variance. The null hypothesis is that the variances are
equal across the categories of subsite. A non-significant results thus indicates homogeneity of
variances. In this case the p-value is 0.312, which indicates that the model assumption is
fulfilled.

The mean age for each subsite is shown in the descriptives table. Double click on the
ANOVA table and the p-value. The significance of the ANOVA is 4.45%107, thus the null
hypothesis is rejected. In the post hoc test, each category is compared to every other category,
using multiple independent samples t-test with a Bonferroni corrected p-value. In this table
the p-values of each comparison has been multiplied with the number of comparisons, which
means that a significant p-value should be <0.05.

2.4 Chis-square test / Fisher’s exact test

To compare the distribution across categorical variables, a chi-square test is used. The chi-
square value is not valid, when the number of subjects is less than 5 in one of the cells. In that
case a Fisher’s exact test should be used.

2.3 Is the distribution between men and women different for different stages?

Step 1: determine which test should be used and define the null hypothesis.

Subjects from different stages are independent groups. From a crosstab between stage and sex
can be seen, that the number of subjects in some cell is less than 5, which means that a
Fisher’s exact test should be used.

Ho: the proportions of men and women are equal between the groups of stage.

Step 2: Perform the test

Analyze > Descriptive statistics > Crosstabs

Go to statistics and tick the box ‘Chi-square’ (even if you are going to perform a Fisher’s
exact test). Go to exact and tick the box ‘exact’.
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Step 3: Interpret the result

Asymp. Sig. Exact Sig. (2- Exact Sig. (1- Point
Walue df (2-sided) sided) sided) Probakility

Pearson Chi-Square 3,621 4 460 461
Likelihood Ratio 3,992 4 407 462
Fisher's Exact Test 3,435 480
;;";;;;;f’;;'”ea" a52P 1 256 360 181 005
M ofvalid Cases 947

a. 3 cells (30,0%) have expected countless than 5. The minimum expected countis 40,

. The standardized statistic is 23,

The 2-sided p-value of the Fisher’s exact test is 0.480, which indicates that the null hypothesis
is not rejected.
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Assignment 2.1 Simple inferential statistics

Data: skin cancer screening
Patients at risk for skin cancer received a full body examination. A questionnaire was filled in
by the patients to determine factors which increase skin cancer risk

Use Figure 2.1 for this assignment. Questions with an asterisk (*) have hints on the next page.

1. Is the age distribution between patient with and without AK different? Define the null and
the alternative hypothesis and perform the correct statistical test.

Patients with AK received a 4-week treatment with 5-fluoro-uracil (5-FU) cream. This
treatment has side effects, such as redness of the skin, burning sensation and pain. Patients
were asked to fill in a questionnaire, which included a visual analogue score for pain score
from 0 (no pain) to 10 (severe pain) before treatment (week 0), during treatment (week 2 and
4) and after treatment (week 6).

o 1 2 3 4 5 6 7 8 9 10
o0) (90 (36 (@0) (¥
\_/ N . — iy

Mo pain Mild, annoying .\.'.13.giug_, I'litlm:.tlﬂg_ Intense, Worsl pmiih]c_,
pain uncomioriable, eniserable dreadiul, unbearable,
troublesomic ;pmin: harrible ;luin crcruliating

paimn pain

Figure 1: visual analogue scale for pain

2a. How should the 95% CI for the mean pain score at week 2 be calculated? Choose between
option 1 and 2.

Option 1: Mean +/- 1.96*SD (standard deviation) = 3.374 +/- 1.96*1.571 = 0.295 to 6.453
Option 2: Mean +/- 1.96*SE (standard error) =3.374 +/- 1.96*0.1047= 3.168 to 3.580
2b. We would like to know if there is a difference in pain score between week 2 and week 4?
Choose the correct test using Figure 2.1. Define the null hypothesis.

2c¢. What is the assumption of the chosen test and test the assumption. Don’t forget to select
only AK patients. Start with calculating a new variable to test the assumption.

2d. Perform the chosen test of question 2b and interpret the output.

3a.We would like to know if there is a difference in pain score between week 4 and week 2
between patients with different skin types. Use the Skin_reaction variable as grouping
variable. Explore the skin_reaction variable.

3b. Choose the correct test and define the null hypothesis. You need to make a new variable
before you perform the test. Do not forget to test the most important model assumption.

4. Among participants with AK above 75 years old, you would like to know if there is a
difference in pain score between week 2 and week 4. Which test would you use? Define the
null hypothesis and perform the test. Explore the variables before you perform the test.

5. Is there a difference in family history of melanoma between patients with and without

SCC? Define the null hypothesis and perform the correct test. Don’t forget to turn the filter
for the previous questions off. You need to make a new variable using DO IF/ ELSE IF
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statements before you can perform the test. Examples of this statement can be found in
paragraph 1.6¢ and 3.4.
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Chapter 3 Linear Regression

Data: Psoriasis

Psoriasis has been related with a number of comorbidities. Patients with psoriasis may have
an increased risk of cardiovascular diseases. For this practical we will use a database of
psoriasis patients and control patients of which multiple (sub)clinical measurements of
comorbidities have been collected.

3.1 Correlation
Correlation is used to measure the association between two variables.

It can be expected that diastolic and systolic blood pressure are highly correlated. The first
step is to visualize the data using a scatterplot. You can use the chart builder.

Graphs > Chart builder

#3 Chart Builder B

Variables: Chart preview uses example data
& PASI[PASI]

&5 Current smaker ...
& Body mass index._.
& Waistto hip ratio _.
& Cholesterolin se...
& HDL-Cholin seru...
‘gﬁ Systolic blood pr... 7
& Diastolic blood pr..y
&b Blood Pressure ...
&b Hypertension [Hy...
&5 Diabetes [Diabet...
L T T PO I I WU SR Ty

1.
Select the type of graph from
o o o the list

/ 2

e / .......... SR | Drag the graph to the chart
: preview

Gallery  Basic Elements GJO%HD Titles/Footnates
Elemeql 3
Choose from: — Drag the variables to the axes.

- 7
S
Bar 2/-:} < OOM 4 Options...

] ~
une L. b el i‘p° fe”
Area

Pie/Palar =
Scatter/Dot o % ? L T
Histogram [e] E g h
High-Low

Boxplot
Dual Axes

FH Category 1
B Category 2

() o (ane) (csn) (e

Or use a predefined format:
Graphs > Legacy dialogs > Scatter/dot > Simple scatter

GRAPH
/ISCATTERPLOT(BIVAR)=SBP WITH DBP
IMISSING=LISTWISE.
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We will calculate Pearson’s correlation coefficient, which is used for continuous variables.
Pearsons correlation coefficient (r) is a number between -1 and 1.

(a) : ®) |
y - " .
[ o
° o
Q ° ® (]
o (]
(] ° ° o
Positive linear Negative linear
r=+.82 r=-70
(c) (d) (e)
o
° ° o ©
o © ° o o P o
° o p . Sy 0 & ..
. . ° e . 0 ° ®o .
° ° o Y. .
* ° ® o © o o 0
" oo ') o o ©
Independent Curvilinear Curvilinear
r=0.00 r=0.00 r=0.00

Figure 3.1: Some examples of relationships between two variables as shown in scatter plots. Note that
the Pearson correlation coefficient (r) between variables that have curvilinear relationships will likely be

close to zero.
Source: Adapted from Stangor, C. (2011). Research methods for the behavioral sciences (4th ed.).
Mountain View, CA: Cengage.).

Analyze > Correlate > Bivariate

The data was plotted first, because it is inappropriate to calculate a Pearsons correlation
coefficient when there is no linear relationship. From the output we obtain a pearson’s r of
0.607. The Pearson’s r* indicates how much of the variability in y is explained by x. In this
case 0.607°=0.369, meaning that 36.9% of the variability in systolic blood pressure is
explained by diastolic blood pressure

Spearman rank correlation coefficient is the non-parametrical equivalent and may be
calculated when the sample size is very small.

3.2 Simple linear regression

Linear regression is used to predict the outcome of continuous outcome measures based on
covariates. Different terminology is used to express the same thing:

X1, Xa,... Xk Y

‘Predictor’ ‘Outcome’
‘Explanatory variables’ ‘Response’
‘Independent variables’ ‘Dependent variable’
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‘Covariates’
Questions, which can be answered using linear regression:
- How can Y be predicted on the basis of the X’s
- Does X; have influence on Y, when controlling for the other X’s

We can predict the systolic blood pressure based on the diastolic blood pressure using a

simple linear regression model. Recall the following formula from high school mathematics:

Y=a+b*x = Y:B0+B1*X

25,00

20,007

15,009

10,004

Intercept = B

&6 Regression Coefficient = 3,

R2 Linear = 1

Bo

T T
0,00 2,00 400 6,00 8,00 10,00

0,004

Y=a+b*x = Y=By+B*x

3.2a a linear regression model for blood pressure
Step 1: Let’s make a similar figure for blood pressure using our data. Double click on the
Graph that you have produced in 3.1. The Chart editor is opened. Add a fitted linear line.
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A linear regression line is fitted and the formula is shown.
Y=45.48+1.26*X
Systolic Blood Pressure=45.48+1.26*Diastolic Blood Pressure

45.48 is the intercept (or Po)
1.26 is the regression coefficient for diastolic blood pressure (or ;)

Now we can predict the systolic blood pressure by using diastolic blood pressure. For
example: the systolic blood pressure of a person with a diastolic blood pressure of 80 mmHg
is on average 45.48+1.26*80=146.28 mmHg.
Step 2: We can obtain the same result by building a linear regression model.

Analyze > Regression > Linear
The dependent variable is systolic blood pressure and the independent variable is diastolic
blood pressure. Go to Statistics and tick the box for Confidence Intervals, Level 95% and

Descriptives.

Step 3: Interpret the output. We will focus on only two tables in this assignment.
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Model Summary

Model

R R Square

Adjusted R
Square

Std. Erraor of
the Estimate

1

BO7? 369

367

18,606

a. Predictors: (Constant), Diastolic blood pressure (mmHg)

Coefficients®

Unstandardized Coefficients

Standardized
Coefficients

95,0% Confidence Interval for B

Madel B Std. Error Beta t Sig. Lower Bound | Upper Bound
1 (Constant) 45,479 6,940 6,553 0o 31,828 59,130
Diastolic blood pressure
(mmHag) 1,258 080 607 14,057 000 1,083 1,435

In these tables you can find the r? which we calculated before, as well as the regression
coefficients. Use the unstandardized coefficients. The interpretation for the 3 for diastolic
blood pressure is: for each unit increase in diastolic blood pressure (1 unit=1 mmHg) the
systolic blood pressure increases with 1.259 (95% CI: 1.083-1.435).

The p-value is 1.162*10%°, which indicates that this is statistically significant. In addition, the
95% CI excludes the value 0. (i.e. 0 indicates no change for each unit increase, thus if the
95% CI includes the value 0O there is no statistical significant difference).

3.3 Model assumptions

The model assumptions of a linear regression are:

1. Independence of observations

All observations should be obtained from different subjects (i.e. patients should not be
included twice).

2. Linearity

We assume a linear relation between the outcome and the covariate. Non-linear relationships
can be taken into account, which is discussed in paragraph 3.8.

3. Normality (for x=1,x=2, etc.)

This is best illustrated by the figure below. The outcome variable does not have to be
normally distributed, but for every value of x we assume a normal distribution. Thus for our
example of systolic blood pressure: an overall test of a normal distribution of systolic blood
pressure is not required. However we assume, that for a diastolic blood pressure of 80 mmHg
the values of systolic blood pressure are normally distributed, and for 81 mmHg diastolic
blood pressure, the systolic blood pressure values should be normally distributed, as well as
for 82 mmHg, etc.

4. Homoscedasticity (standard deviations are equal, for x=1, x=2, x=3 etc.)

This relates to assumption 3 and is also illustrated by the figure below. Equal standard
deviations (SD) for each value of x, result in equal normal distributions for each value of x.
This indicates that the variance is equal for each value of x.
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Figure 3.2: a visualization of a linear regression model

Looking at the model assumptions and figure 3, it may me more clear, that linear regression
model may be regarded as an ANOVA (chapter 2.3): each value of x can be regarded as a
group and variance of each group should be equal.

The first assumption cannot be statistically tested, but should be included in the design of the
study. Assumption 2 can be visualized by using a scatterplot. Further information can be
found in paragraph 3.8 . Based on assumption 3, the residuals are expected to be normally
distributed. Assumption 3 and 4 (normality and homoscedasticity) can also be tested by
saving and plotting the residuals against the predicted values and the covariates:

Step 1: Ask for a histogram of the residuals and a normal probability plot.
Analyze > Regression > Linear > Plots

Histogram Normal P-P Plot of Regression Standardized Residual

Dependent Variable: Systolic blood pressure (mmHg) Dependent Variable: Systolic blood pressure (mmHg)
1.0

Mean = -4,13E-16
0] - Std. Dev. = 0,989
N =340

1
o
w

Frequency
ki

=
e
n

T T T 0o T T T T
E 2 4 00 02 04 06 08 10

Expected Cum Prob

Regression Standardized Residual Observed Cum Prob

You obtained a histogram of the residuals with an normal curve and an P-P plot for the
standardized residuals. A P-P plot can be interpreted as a Q-Q plot which was described in
Chapter 1.4. A deviation from the straight line implies a deviation from normality. The plot
indicates that there may be a small deviation from normality.

Step 2: save the predicted values and the unstandardized residuals.

Analyze > Regression > Linear > Save
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Go to the ‘Save’ menu of the linear regression model and tick the box unstandardized
predicted values and unstandardized residuals. In the variable view and data view you will

find two new variables: PRE_1 and RES_1.

Step 3: plot the diastolic blood pressure against the residuals and the predicted values against

the residuals.

GRAPH

ISCATTERPLOT(BIVAR)=DBP WITH RES_1

/IMISSING=LISTWISE.

You can easily change the syntax to make the second plot:

GRAPH

ISCATTERPLOT(BIVAR)=PRE_1 WITH RES_1

IMISSING=LISTWISE.

Step 4: Interpret the graph

The residuals should be spread equal around 0 for each value of x (each value of diastolic
blood pressure) and each predicted value of systolic blood pressure. You can add a reference
line at 0 by opening the chart editor by double clicking on the plot.

- .
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— = — *2 — — — - Chart Size | Lines | Reference Line | variables
o0 EXYEABE B ki:)ﬁ Clelml Ealn I |-
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B e Gl W B A9
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b4 ! [}
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(%]
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2
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| o
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T
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Both graphs indicate that the model assumption of homoscedasticity is fulfilled. A deviation
from normality and homoscedasticity may indicate that a data transformation of the outcome
variable (e.g. log transformation) is needed. A common problem is an increase of the variance
for larger values of the covariates or predicted values, which is shown in figure 3.3.
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Figure 3.3: indication of heteroscedasticity

3.4 Categorical variable coding
Categorical variables can also be taken into account into a regression model.

Step 1: make a new categorical variable
The following syntax is useful to categorize continuous variables, such as BMI.

DO IF MISSING(BMI).

COMPUTE BMI_cat=999999.

ELSE IF BMI <18.5.

COMPUTE BMI_cat=2.

ELSE IF BMI>=18.5 AND BMI<=25.

COMPUTE BMI_cat=1.

ELSE IF BMI>25.

COMPUTE BMI_cat=3.

END IF.

EXECUTE.VARIABLE LABELS BMI_cat 'category of BMI'.
VALUE LABELS BMI_cat 1 'normal weight' 2 'underweight' 3 ‘overweight'.

Note that normal weight is coded as the first category, because SPSS can only take the first or
the last category into account as reference category.

Categorizing continuous variables leads to a loss of information. It is generally better to
include them as continuous variables, but sometimes or in the final regression model
clinically relevant categories may be easier to interpret.

Step 2: create dummy variables for a categorical variable

SPSS uses dummy variable coding with a reference category to include categorical variables
in the regression model. The number of dummy variables is always the number of categories
minus 1. For 3 categories, 2 dummy variables are sufficient:

BMI_cat BMI_dummy 1 BMI_dummy 2
1 (normal weight) 0 0
2 (underweight) 1 0
3 (overweight) 0 1
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The dummy variables allow the bloodpressure to vary between the categories. In model A,
BMI categories (1,2,3) are included in the model as a linear covariate, assuming that the
difference in systolic blood pressure between category 2 and 3 is equal to the difference in
systolic blood pressure between category 1 and 2 (Model A, Figure 3.4A).

Dummy variable coding allows for differences between categories (model B, Figure 3.4B.

Model A: Systolic blood pressure=po+p:*BMI_cat
Model B: Systolic blood pressure=Bo+p1*BMI_dummy 1+B,*BMI_dummy_2

o Category 3 B / Category 3
A /// //
/’ ////
= __— Category 2 ///
// // sl Categoty 2
G B = = }62 // Category 1 (Reference)
// Category 1 (Reference) / gory
= > i .t 5
sBR _— i e SBP J i FET g
¥y _—
T 5
1t
i //‘/
DBP

DBP
Figure 3.4: Dummy variable coding in model B.

Step 3: Perform the regression analysis with the categorical variable
Perform to regression analyses.

Analyze > Regression > Linear.

Include both BMI_dummy_1 and BMI_dummy_2 as independent variables. This will lead to
the following output table:

Coefficients®

Standardized
Unstandardized Coefficients Coefficients 95 0% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound | Upper Bound
1 (Constant) 137,496 1,966 65,528 000 133,629 141,364
BMI_dummy_1 -7,371 11,715 -034 -629 530 -30,416 15,673
BMI_dummy_2 7872 2,561 166 3,073 002 2,834 12,911

a. Dependent Variable: Systolic blood pressure {(mmHa)

Step 4: Interpretation of the output:

The output tells you that the mean systolic blood pressure of underweight participants (level
2) is 7.4 mmHg (95% CI: -30 to 16) lower compared to normal weight subjects. The p-value
of the regression coefficient is 0.530, meaning that this the difference is not statistically
significant. This was to be expected as there were only 4 participants underweight.

The participants who are overweight (level 3) have a mean systolic blood pressure which is
7.8 mmHg higher compared to normal weight participants (level 1) with an 95% between 2.8
and 12.9 and a p-value of 0.002. This difference is statistically significant.
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3.5 Multivariable linear regression.

There are two main reasons to perform a multivariable regression model.
1. Predict the outcome based on covariates: confounding is not an issue
2. Investigate the association between exposure and outcome, adjusted for possible
confounders.

In this paragraph we will focus on the first option. Confounding will be discussed in
paragraph 3.6.

The systolic blood pressure may also be dependent on other variables, such as age. Both age
and diastolic blood pressure can be used to predict systolic blood pressure. Note that the
following statistical terminology is used:

Univariate:  one outcome measure
Multivariate: multiple outcome measures
Univariable: one exploratory variable
Multivariable: multiple exploratory variables

3.4 What is the mean systolic blood pressure of a 60-year old non-smoking woman with
a BMI of 19 and a diastolic blood pressure of 85 mmHg?

Step 1:
To answer this question we need to include age, current smoking, diastolic blood pressure in
one linear regression model.

REGRESSION
/IDESCRIPTIVES MEAN STDDEV CORR SIG N
IMISSING LISTWISE
ISTATISTICS COEFF OUTS CI(95) R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/INOORIGIN
/DEPENDENT SBP
/IMETHOD=ENTER sex age BMI current_smoker DBP.
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Model Summary
Adjusted R Std. Error of
Model R R Square Square the Estimate
1 71278 507 489 16,578

a. Predictors: (Constant), Diastolic blood pressure (mmHag),
Age, Body mass index (kg/m2), Current smoker, sex

ANOVA*
Sum of
Model Squares df Mean Sguare F Sig.
1 Reagression 88238866 5 17647773 64,216 0008
Residual B5743,062 32 274,818
Total 173981,928 7

a. Dependent Wariahle: Systolic blood pressure (mmHg)

h. Predictors: (Constant), Diastolic blood pressure (mmHg), Age, Body mass index
(ka/m2), Current smoker, sex

Coefficients®

Standardized
Unstandardized Coefficients Coefficients 95,0% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound Upper Bound
1 (Constant) -33,420 11,724 -2,851 005 -56,488 -10,353
> Sex 1,723 1,956 036 881 374 -2126 5672
Age 8849 o7 338 8,380 ,aoa 688 1,110
Body mass index (ka/m2) 265 241 045 1,099 272 -210 740
Current smoker 3103 21583 054 1,441 151 -1,134 7,338
(Dr:frit,ﬂg)c blood prassure 1,382 085 662 | 18171 000 1,213 1,550

a. Dependent Wariahle: Systolic blood pressure (mmHg)

Step 2: Interpret the output

Note: In the descriptive table (not shown above) you can see that only 318 participants are
included in the analysis. SPSS performs a complete case analysis, thus participants with any
missing value are excluded. There are statistical methods to deal with missing values (e.g.
multiple imputation techniques), but that is beyond the scope of this practical.

Model summary

The model summary provides goodness-of-fit measures of the regression model.

R square: equivalent to the simple R square as measured by Pearsons correlation coefficient.
The simple R square tends to overestimate the explained variance when there is more than one
covariate in the model.

Adjusted R square: R square adjusted for the number of covariates in the model. Use this
measure of goodness of fit for multivariable regression models.

Thus, 49.9% of the variance in systolic blood pressure is explained by all variables in the
model.

ANOVA table

The ANOVA table of a linear regression model test the overall regression. The null
hypothesis of the ANOVA table is:

Ho: all regression coefficients (all B’s, except the intercept) are 0.

If we look at the ANOVA table, we can see that the p-value is <0.001 and that the null
hypothesis is rejected.
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Coefficients
In this table you will find the regression coefficients and the p-values shown for each
regression coefficient () separately.

The interpretation of the B for diastolic blood pressure is slightly different compared to a
univariable model with diastolic blood pressure only.

Interpretation of the B for diastolic blood pressure in a univariable model:
The increase in systolic blood pressure per 1 mmHg increase in diastolic blood pressure.

Interpretation of the f for diastolic blood pressure in a multivariable model.:
The increase in systolic blood pressure per 1 mmHg increase in diastolic blood pressure,
while holding the value of all other variables in the model constant.

Step 3: Predict the systolic blood pressure based on the model.

The statistical model is:
SBP= Bg+ Bi*sex+ Bo*age+Ps*BMI+B,*current smoker+Bs*DBP
SBP= -33.420+1.723*sex+0.899*age+0.265*BMI+3.103*current smoker+1.382*DBP

The mean systolic blood pressure of a 60-year old non-smoking woman with a BMI of 19 and
a diastolic blood pressure of 85 mmHg is:
-33.420+1.723*1+0.899*60 +0.265*19+3.103*0+1.382*85=145 mmHg

You can repeat the calculation using the estimates of the 95% CI of the B’s to obtain the 95%
Cl for the prediction.

3.6* Confounding

A confounder is a covariate which explains (part of) the association between exposure and
outcome, but is not part of the causal pathway. Confounding may be a problem when
answering the following research question:

3.6 Is psoriasis associated with a larger intima media thickness (as a subclinical measure
of atherosclerosis)?

We suspect that the relation between psoriasis and intima media thickness may be influenced
by other variables, such as smoking, which increases risk for psoriasis and is also associated
with atherosclerosis. Confounders may be a priori selected based on literature or clinical
expertise. Confounders may also be selected based on the influence on the association.
Including all variables in the multivariable model which are associated with the outcome in
the univariable analysis is not necessary, because not all variables will explain (part of) the
association between exposure and outcome and may only be related to the outcome.

3.6a A priori selection of confounders based on literature

From literature may be known that smoking, BMI, hypertension and serum cholesterol may
influence both the risk on psoriasis as well as the risk on atherosclerosis. Therefore can be
decided to include all these potential confounders in the multivariable model.
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Step 1: Select all patients who do not have missing values in any of the selected variables to
prevent analyses of a different samples for different analyses.

Step 2: Perform a univariable model, an age and sex adjusted model and the full multivariable
model:

Univariable model:

Coefficients®
Standardized
Unstandardized Coefficients Coefficients 95 0% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound [ UpperBound
1 (Constant) 988 011 7171 ,ooo 66 1,011
Psariasis patientar
contral subject 018 030 034 5az2 554 -,042 a7a

a. Dependent Variahle: Intima Media Thickness

Age and sex adjusted model:

Coefficients®
Standardized
Unstandardized Coefficients Coefficients 95,0% Confidence Interval for B

Model B Std. Error Beta t Sig. Lower Bound | UpperBound
1 (Caonstant) 450 074 6,058 0oa 304 006

Psoriasis patient or

contral subject 034 028 0f4 1,212 226 oM 089

Age ooa 001 408 7652 aoa 006 010

SEX -,045 020 -122 2,282 023 - 083 -, 006

a. Dependent Variahle: Intima Media Thickness
Full multivariable model:
Coefficients®
Standardized
Unstandardized Coefficients Coefficients 95 0% Confidence Interval for B

Model B Std. Error Beta t Sig. Lower Bound Upper Bound
1 (Caonstant) 284 108 2,624 009 071 496

Fszoriasis patient or " o "

contral subject 035 028 066 1,261 208 -019 089

Age 007 0o 358 6,608 000 005 009

SEX - 052 020 -142 -2,542 010 -,082 -013

Body mass index (ka/m2) 003 002 065 1,214 226 -,002 008

Chalesteral in serum

{mmolfj] 016 aoa 103 1,819 JO56 Jooa 032

Current smoker 041 022 00 1,872 062 -,002 083

Hyperension a7a 021 206 3773 ,0oo 038 18

a. Dependent Variahle: Intima Media Thickness

3.6b Confounder selection based on influence of risk estimate

Another approach to select confounders could be to include all potential confounders which
influence the age and sex adjusted risk estimate by 10%. The B for psoriasis in the age and sex
adjusted model was 0.034. An influence of 10% would be 0.034 +/- 0.0034 = 0.0306 and
0.0374. Inclusion of a potential confounder in the age and sex adjusted model which leads to
an influence on the regression coefficient of psoriasis outside these boundaries is considered a
confounder and included in the multivariable model.

Step 1:
Change the following syntax by changing BMI in the last line into Cholesterol,
current_smoker and Hypertension.
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REGRESSION
/IDESCRIPTIVES MEAN STDDEV CORR SIG N
IMISSING LISTWISE
ISTATISTICS COEFF OUTS CI(95) R ANOVA
/ICRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT IMT
IMETHOD=ENTER psocase age sex BMI.

Step 2:
Examine the B for psoriasis for inclusion of each potential confounder.

Potential confounder | B for psoriasis
(increase in IMT for psoriasis
patients compared to controls)

BMI 0.031
Cholesterol 0.042*
Smoking 0.034
Hypertension 0.029*

* indicates that the [ is outside the aforementioned 10% boundaries.

From these analyses we can conclude that only serum cholesterol and presence of
hypertension confound the relation between psoriasis and intima media thickness

Step 3: Perform the multivariable model based on the findings in step 2

Coefficients®
Standardized
Unstandardized Coefficients Coefficients 95 0% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound Upper Bound
1 (Caonstant) 381 086 4,408 ooa 21 561
Fszoriasis patient or
control subject 038 028 072 1,368 72 - 017 ez
Age oo7 .0m 347 6,409 ,ooa 005 o9
SeX -,054 020 - 146 -2,731 o7 -,092 - 015
Cholesterol in serum
{mmali] 017 oos 112 2,073 033 001 034
Hyperension 078 020 204 3,803 ooo 037 118

a. Dependent Variahle: Intima Media Thickness

The conclusion for both methods is that psoriasis is not associated with a significantly
increase in intima media thickness adjusted for potential confounders.

3.7* Interaction

In the example above we assumed that the increase in intima media thickness for each year of
age is equal for control participants and patients with psoriasis. However, there may be effect
modification by psoriasis, meaning that the increase in intima media thickness per year of age
may be different between participants with and without psoriasis. This is called interaction
and is illustrated by the figure below:
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Figure 3.7 An example of interaction in linear regression between psoriasis and age for the difference in
carotid intima media thickness. If no interaction is present, the difference in intima media thickness will be
equal for all ages. In the case of statistical interaction, the difference in intima media thickness depends on age.
Source: Wakkee et al. JID 2014.

There is a difference between biological interaction and statistical interaction.

Biological interaction = effect modification
Statistical interaction = effect measure modification

We can test the statistical interaction by including an interaction term in the regression model.
However, this does not tell you if there is a biological plausible mechanism for the effect
measure modification of the effect of age by psoriasis. Statistical significance is not the same
as clinical relevance. Therefore you should specify the relevant interactions that you would
like to test for in advance.

Statistical interaction can be tested by using an interaction term in the regression model,
which is illustrated in box and figure

Linear regression model without interaction:
IMT = Bo+B1*age+B,*psoriasis

Linear regression model with interaction:
IMT = Bo+P1*age+P2*psoriasis+Ps*age*psoriasis

To test for interaction it should be tested if B3 is equal to O.
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IMT

52[/

Psoriasis interaction with age:

(Bo*B2)+(B1+Ba)"age

Psoriasis no interaction with age:
(Bo+B2)*+B1*age

age

Controls: Bo+B4*age

Graphical representation of a regression model with and without interaction between age and
psoriasis

3.7 Is there statistical interaction between age and psoriasis in a regression model for

IMT?

Step 1: define the null hypothesis;

Ho: There is no statistical interaction between age and psoriasis. Thus the 3 (regression
coefficient) of the interaction term is 0.

Step 2: Create a new variable by multiplying age with psoriasis

COMPUTE age_psocase=age*psocase.
EXECUTE.

Step 3: perform the linear regression model and include the interaction term for age and
psoriasis in the final model, which includes all possible confounders.

Step 4: Interpret the output

Coefficients®
Standardized
Unstandardized Coefficients Coefficients 95 0% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound [ UpperBound
1 (Constant) A09 089 4,604 ,0oa 234 583
Fsoriasis patient or
contral subject -309 261 - 589 -1,184 237 -823 208
Age oor 0o 328 5870 ,ooa 004 009
SEX - 052 020 - 142 -2 662 Joos -,081 -014
Cholesterol in serum
(mmalim] 017 oog 11 2,058 040 001 033
Hyperension 076 020 189 3,706 ,ooo 035 1B
age_psocase 005 004 B63 1,336 183 -,003 013

a. Dependent Variable: Intima Media Thickness

The B for the interaction term is 0.005, which means that for each year of increase in age,

there is an extra increase of 0.005 mm in IMT on top of the 0.007 mm increase for psoriasis
patients compared to controls. However, the p-value of this interaction term is 0.183, which
indicates that the null hypothesis should not be rejected and there is no statistical interaction

between age and psoriasis. The interaction term should not be included in the final
multivariable model.
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Don’t forget to put the filter off before the next paragraph.

3.8* Non-linear relationships

From Scatterplots it may be obvious that the predictors are not linearly related to the outcome.
This will lead to a non-significant B for a linear predictor. There are various ways to deal with
non-linear relationships in regression analysis.

Categorize
This is an easy way of representing non-linear relationships. Clinically relevant categories

may be used in the regression model. A disadvantage is that many B’s (and thus degrees of
freedom) are spend, cut-off values may be arbitrary and thereby valuable information is lost.

Polynomials
Another easy way of testing for non-linearity may be to include polynomials. The first step is

to include a term for X? in the regression model. If X is linearly related to the outcome the
regression coefficient is 0. However, not all relationships have a parabolic shape. Higher
powers of X may be included in the model, but the disadvantage of polynomials is that they
may behave ‘wobbly’ in the tails.

Use the SPSS curve estimation to test for a possible quadratic relationship:
Analyze > Regression > Curve estimation

Ask for a linear and a quadratic curve and the plots.

Intima Media Thickness

T T T
H B0 70 80 a0 100

Coefficients
Standardized
Unstandardized Coefficients Coefficients
B Std. Error Beta t Sig.
Age 034 016 1,869 2,427 016
Age ** 2 0oo 000 -1,478 -1,619 056
(Constant) - 638 565 -1,128 260

From the table can be obtained that there is no evidence of a quadratic relationship between
age and IMT, as the regression coefficient for age? is not significant.
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Fractional Polynomials

Fractional polynomials have with different powers compared to regular polynomials, e.g.:
Y=Po + BrX " +Bo*X°

Fractional polynomials are therefore more flexible, but models may be difficult to interpret. In
STATA fracpoly is useful command to select the best degree and powers. In SPSS it is not
possible to automatically select the best degree and powers.

Splines
The use of spline functions is a very flexible way of regression modelling with efficient use of

the degrees of freedom (meaning that not many 3’s are needed to model complicated non-
linear relationships). There are many sorts of splines; simple linear splines, cubic spline,
restricted cubic splines, penalized cubic splines. SPSS can take spline functions into account,
but modelling spline functions is also relatively easy in R.

Note: When using logistic regression (Chapter 4), linearity is assumed between the predictors
and the logit. A Cox proportional hazards regression (Chapter 6) assumes linearity with the
LN(hazard). The same principles and methods of non-linear relationships apply to those
types of regression.
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Assignment 3-1 Univariable and multivariable linear regression

Data: blood pressure

We want to study with multiple regression the joint relationship of age, body weight and pulse
rate with the diastolic blood pressure. The exercise uses the data from BLDPRES.SAV. (Open
file 'BLDPRES.SAV'.) Make sure that you Paste each action into your syntax first before you
Run it.

1. Obtain the correlation coefficients between age, body weight, pulse rate and diastolic blood
pressure and examine these, to learn something about any potential correlation between the
variables.

2a. To visualize the data and to see if it is appropriate to calculate a Pearson correlation
coefficient, we look at the simple relationships between each of the predictor variables and the
diastolic blood pressure. Make a scatter plot with DIAS as Y-variable and AGE as the X-
variable. Repeat this for body weight and pulse frequency

2c. Provide the regression coefficients and interpret the r square for age, body weight and
pulse frequency using the plot.

3. Fit three univariable models for age, body weight and pulse frequency as covariates and
diastolic blood pressure as dependent variable.

Give the regression coefficients, 95% CI and their significance.

What is the interpretation of these regression coefficients?

4. Fit a multivariable model for diastolic blood pressure including age weight and pulse as
independent variables. Ask for 95% confidence intervals for the regression coefficients
(Statistics) and a Histogram (Plot) and Normal Probability Plot (Plot) and save the predicted
values and the unstandardized residuals (Save).

4a. Consider the ANOVA table accompanying the multiple regression analysis. What is the
hypothesis that is tested with the F-test and what is the conclusion?

4b.What is the percentage variability in diastolic blood pressure explained by age, weight and
pulse together?

4c. Examine the histogram and normal probability plot of the residuals and judge whether the
assumption of Normality is reasonably fulfilled.

4d. Plot the fitted values against the residuals and the covariates against the residuals and
judge whether the assumption of homoscedasticity is fulfilled.

4e. Look at the estimated regression coefficients. What is their interpretation? Notice that the
regression coefficients do not differ much from the simple regression coefficients you have
found in part b of this exercise. Can you explain that?
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Assignment 3-2 Confounding, Interaction, non-linear relationships

Data: phlebology

Twenty-five patients with varicose veins were examined. We are interested in the relation
between severe varicose veins (those with a healed ulcer or an active venous ulcer) and
patient reported outcomes. Patients scored their overall health with a number between 0 (very
bad health) and 100 (excellent health).

1. The Clinical Etiologic Anatomic Pathophysiologic (CEAP) score indicates the severity.
Patients with C5 and C6 were combined into 1 category due to the low patient numbers.
Examine the relation between CEAP and overall health score. What is the difference in
health score between patients with and without venous ulcers? Is this difference statistically
significant?

Other variables may confound the relation between venous ulcer and health score.
2a. Recall the definition of a confounder

2b. Based on the answer on question 2a, think of possible confounders (regardless of
statistics).

2c. Perform a model with these a priori determined confounders

It is also possible to statistically test if variables distort the relation between CEAP and health
score.

3a.Start with an age and sex adjusted model. What is the point estimate of the age and sex
adjusted CEAP score and the interpretation of this estimate?

3b. Use the 10% rule to determine if the diameter of the great saphenous vein
(GSV_diameter) and weight confound the age and sex adjusted CEAP estimate.

4. Is the relation between weight and overall health score different between those with and
without venous ulcers? Use the final model of 3b.

5a. Examine the linearity assumption using scatterplots for GSV_diameter , weight and heart
rate .

5b. Use the curve estimation procedure to find the correct curve for the variable without a
linear relationship. Which model would you test?

5¢. What is the difference in R? between the linear and the non-linear relationship?

5d. What is the univariable model based on the curve-estimation?
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Chapter 4 Logistic Regression

Data: actinic keratosis (AK)

More than 800 people were screened on the presence of actinic keratosis. The number of
actinic keratosis was registered as well as potential risk factors for the development of actinic
keratosis.

Logistic regression is used when the outcome is binary, for example:

0 = no disease

1= disease

These are often case control studies. Logistic regression is used to predict the effect of the
covariates on the probability of the outcome.

The probability to have the disease is restricted to the values 0 and 1. To transform these
values, the logit link is used (see box below). Logistic regression is used to estimate the odds
ratio.

The logit link

T = probability on the disease

odds = =
1-1

_ odds
Tc —_
. odds+1
logit = In(odds)
General linear model -> linear regression, outcome is continuous

Generalized linear model - e.g. logistic regression, ordinal regression, Poisson regression.
The outcome variable can be binary, categorical or count data.
A link function for the outcome is used to linearly relate the
predictors to this link function.

The logistic regression model:
In(odds) = By + B1X1 + B2Xy + BsXs+ -+ BiuXk

Recall the formula of a linear regression model en note the similarities:
Y =00+ BiX1 + BXo+ BsXs+ -+ BiXi

4.1 Odds Ratio

The odds ratio is an approximation of the risk ratio and can be calculated from a simple 2x2
table.

4.1 What is the risk ratio and the odds ratio of females vs males for the development of
actinic keratosis?

Analyze > Descriptive Statistics > Crosstabs

Tick the box ‘Risk’ in the ‘Statistics’ menu.

52




Sex * Actinic keratosis yes/no Crosstabulation

Count
Actinic keratosis yesino
Mo fas Total
Sax Male 216 163 3ava
Female 346 120 466
Total f62 283 a45

Risk of AK in males=-2 = 0.43

379
Risk of AK in femaleszﬁ = 0.25
) . 120/466
Risk Ratio females vs males:#/379 = 0.60

Odds of AK in males=—2 = 0.75

216
Odds of AK in femaleszg = 0.35
. 120/346
Odds RatiOsemales vs males:@ = 0.46

The odds ratio is not exactly the same as the risk ratio. The approximation becomes better if
the disease is rare, which is not the case for AK. Try to calculate the risk ratio and the odds
ratio of females vs males for the following 2x2 table:

Psoriatic arthritis | Total
No Yes
Sex Male 370 9 379
Female 452 14 466
Total 822 23 845
How to calculate a 95% of the OR?
Disease Total
No Yes
Exposure No a b a+b
Yes c d c+d
Total at+c b+d | a+b+c+d
-1t ,1,1. 1
se In(OR) —/a+b+c+d
95% Cl of OR :eln(OR)il.%*se(ln(OR))

4.2 Univariable Logistic Regression




We can obtain the same result using logistic regression

Analyze > Regression > Binary Logistic

AK_binary is the dependent variable and sex is the covariate. Sex is a categorical covariate

for which the reference category should be specified. Go the ‘Categorical’. Move the

covariate to the ‘Categorical Covariates’ box. Use the ‘Change Contrast’ box and choose
‘Indicator’ as contrast and ‘First’ as reference category. Don’t forget to click on ‘Change’ as
SPSS takes the last category as the reference by default.

d:l Highest education completed, ¢
& Length (m) [Length]

& Weight (kg) [Weight]

& Body Mass Index [BMI]

&5 Ever smoker or not [Smoking]
d:l Baldness [Baldness]

& Haircolor [Haircolor]

& Skincolor [Skincolor]

& Evecolor [Evecolor]

d:l Based on hair, skin and eye col...
i Glogau [Glogaul

Covariates

Gender

Method: |Enter

Selection Variable:

|

{5 Logistic Regression 2
— Q?pendem. Categorical..
d;l ldentification [FID] 2 bnd | & Actinic keratosis yes/no [AK_binary] ‘ -
ﬁ:b Presence of actinic keratoses (A.. Block 1 of 1 m
& o oncer
& Age atfull body skin examinatio... Next
. . Bootstrap.

d:l Age ini categories [Age_cat] =

{3 Logistic Regression: Define Categorical Variables

Covariates:

Categorical Covariates:

Gender(Indicator(first))

Change Contrast

Contrast

Indicator  ~

Reference Category: © Last

@ First

L T

Categorical Variables Codings

FParametar
coding
Fraquency (1
Sex Male 374 R ]o]
Female 466 1,000
Variables in the Equation

E SE. Wald df Sig. Exp(B)
Step1®  Gender(1) -7TT 148 27,487 1 000 460
Constant -.282 04 7,363 1 007 764

a. Variable(s) entered on step 1: Gender.

Block 0: only includes the intercept. Block:1 includes the covariates. In the ‘Categorical

Variables Codings’ table you can see, that the reference category is the category which has

the value 0. The OR is the exponent of the regression coefficient (Exp(B)), which is 0.460 as
we have calculated before.
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Why is Exp(B) the OR?

In(odds) = By + Bisex

In(0dds)mates = Bo+ B1 0= By
ln(Odds)females =Po+ B1x1= By + B
0ddsg1es = €Po

Oddsfemales = ePoth

Oddsfemales _ ePot b1 — 0P

OR 1 1 =
females vs.males Oddsmales eﬁo

4.3 Multivariable Logistic Regression

4.3a Are baldness, skin color, sex and age independent predictors of risk on actinic
keratosis?

Analyze > Regression > Binary Logistic

Step 1: To answer this question we need to fit a model which includes all covariates. Ask for
95% CI of Exp(B) at ‘options’ and tick the box ‘CI for Exp(B) 95%’. Specify the categorical
variables. Use ‘no baldness’ and ‘fair/white’ as reference categories. These are both the last
categories.

LOGISTIC REGRESSION VARIABLES AK_binary
/IMETHOD=ENTER Gender Age Baldness Skincolor
/CONTRAST (Gender)=Indicator(1)

/CONTRAST (Baldness)=Indicator

/CONTRAST (Skincolor)=Indicator

/PRINT=CI(95)

/ICRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Step 2: Interpret the output:

Case Processing Summary

Unweighted Cases?® N Percent
Selected Cases  Included in Analysis 2 100,0 There are no patients with
Missing Cases é 0 missing values in any of the
Total 845 100,0 included variables
0

Unselected Cases 0
Total 845 100,0

a. [fweight is in effect, see classification table for the total
numkber of cases.
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Dependent Variable Encoding

Qriginal WValue

Internal Walue

Mo Coding of AK_binary (No/Yes)
% ay- _ -
Yes 1 The probability on AK=yes is modeled
Categorical Variables Codings
Parameter coding The dummy variables created
Frequency |C_(1) (2) D by SPSS:
Skincolor  Light brown [ brown / -8 1 000 000 e.g. Baldness(1) in the
black - ' ' “Variables in the equation’
white to olive 120 000 1,000 table represent Severe
Fair / white 697 000 000 baldness
Baldness  Severe baldness 129 1,000 ,00a
Medium haldness 175 0 Qo
Mo/ almost no baldness 541 000 oo O fqr all dummy variables
Sex Male 479 000 Indicate the reference category
Female 466 1,000
Model Summary . i 2 .
The best approximation of the R is
-2 Log Cox & SnellR Magelkerke R 2 . .
Step likelihond Square Square !\lagelkerke R". The interpretation
1 554 2447 T8 Cf |52equal to the interpretation of the
R“ of a linear regression
a. Estimation terminated at iteration number 20
because maximum iterations has been reached.
Final solution cannot be found.
Classification Table® If the predicted
Predicted probability of AK of
Actinic keratosis yesino Percentage this regression model
Observed Mo fesg Correct is> 0.5 than a
— . ient is classified
Step 1 Actinic keratosis yesino Mo 500 G2 24,0 patrl]ent_ IS ?AK Th
as naving . us
Yes 147 a6 . .
. - with this model,
—OverattPercentage 693 30.4% is correctly
The cutvalue is 500
Variables in the Equation
G5% C.|for EXP(B)
B SE. Wald df Sig. Exp(B) | Lower | Upper
Step 17 Gender(1) - 649 190 | 11,702 1 001 522 360 758
Age 067 012 | 32414 1 ,000 1,069 1,045 1,004 Overall p-value of the
32:322220) 680 248 1173213 12 IUES 1,975 1,212 3,219 variable ‘Baldness’
Baldness(2) 176 215 GBI 1 414 )@,@ 551 1,278
skincolor 6,500 2 03 | | Separate p-values of
Skineolor(1) | -20,382 | 7277108 ,000 1 998 ,000 000 T each category of
Skincolor(2) - 625 245 6,500 1 011 535 331 865 ‘Baldness’
Canstant -5,128 840 | 37,228 1 000 006

a. Variable(s) entered on step 1: Gender, Age, Baldness, Skincolor.

56




The p-values of all variables are below 0.05, (gender=0.001, age<0.001, baldness=0.003, skin
color is 0.039) , thus we can conclude that all variables predict AK risk independent of the
other variables in the model.

Interpretation of the OR for a continuous and a categorical variable:

Age: the odds of AK increases with 6.9% per year increase in age adjusted for sex, baldness
and skin color

Skin color: patients with a white to olive skin have an decreased odds on AK (OR 0.54 (95%
Cl: 0.33-0.87) compared to patients with a fair/white skin. The risk of patients with a light
brown/ brown or black skin could not be estimated, due to the low number of patients (The
actual number of patients cannot be obtained from this output, but should have been
calculated in advance by using a frequency table)

4.3b Is there multiplicative interaction between skin color and baldness?

In other words, are patients who are both severely bald and have a fair/white skin at extra
increased risk of AK than would have been expected based the risk of baldness and skin color
alone?

Include an interaction term in the model by selecting both variables by pressing the Ctrl key
and use the “>a*b>’ key. Always put both variables in the model as well, otherwise the
interaction term will be meaningless.

-=_:.| Logistic Regression &J
- - Dependent Categaorical
d;l Identification [PID] - - |§g Actinic keratosis yesino [AK_binary] |
d:h Presence of actinic keratoses (A Block 1 of 1
& Age atiull body skin examinatio... Next
:EI Age ini ; Bootstrap...
ge ini categories [Age_cat] =

Covariates:

,{I Highest education completed, c...
& Length (m) [Length] Gender(Cat)

) ) Age
f Weight (kg) [Weight] \)
ant (k) [Weight . Baldness(Cat)

& Body Mass Index [BMI] !
&5 Ever smoker or not [Smoking] .’ Skincolor(Cat)
Ml Baldness [Baldness]

&b Haircolor [Haircolor]
&> Skincolor [Skincalor]
& Eyecolor [Eyecolor] Selection Variable:
,{I Based on hair, skin and eye col... - | |
7l Glogau [Glogau] -

Method: |Enter b

[ OK ][Easte ][ Reset ][Cancel][ Help ]

Thus the model includes:
Gender

Age

Baldness

Skincolor
Baldness*Skincolor
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Variables in the Equation

55% C I for EXP(E)
B SE. wald df Sig. Exp(B) | Lower | Upper
Step 17 Gender(1) _651 101 | 11623 1 001 £22 350 758
Age 066 012 | 3098 1 000 1,068 1,044 1,003
Baldness 8,080 2 018
Baldness(1) 547 263 4,324 1 038 1,727 1,032 2,891
Baldness(2) -,236 228 1,056 1 304 791 506 1,237
Skincolor 7,270 2 026
Skincolor(1) 20189 | 8354663 000 1 998 000 000 .
Skincalor(2) 1,069 307 7,270 1 007 343 158 747
Baldness * Skincolor 2,844 4 584 >
(E:a)'dnessm by Skincolor 1,384 | 41052,104 000 1 1,000 152 000
(Bza)'dnessmhy Skincolor 1,059 645 2,696 1 101 2,883 815 | 10208
(E:a)'dnesstz) by Skincolor .266 | 18088,004 000 " 1,000 775 000
Baldness(2) by Skincolor
2 (2) by 606 508 1,030 1 310 1,834 568 5915
Constant -5,002 845 | 35075 1 000 007

a.Variable(s) entered on step 1: Gender, Age, Baldness, Skincolor, Baldness * Skincolor .

The p-value of the interaction term is 0.584, thus there is no statistical interaction between
baldness and skin color. In case of interaction, the ORs are difficult to interpret and the best
option would have been to stratify the model on baldness to obtain separate ORs for age,
gender and skin color for each category of baldness.

4.4* Selection of variables

Which variables should be included in the multivariable model?

This is an important question. It is dependent on the purpose of the model. Do you want to
predict the outcome or adjust for possible confounders? It is also dependent on the sample
size of the study (see box below).

In general, there are three possibilities to choose which variable should be included in the
model. A combination of these is also possible. Specify the method which you would like to
use in advance.
1. based on literature or clinical expertise
2. based on influence on the risk estimate of the exposure variable (has been discussed in
paragraph 3.6)
3. based on statistical significance

Personally, I prefer option 1 and 2, but option 3 is also widely used and will be discussed in
this paragraph. Based on statistical significance you can choose between two stepwise
selection methods: backward elimination and forward selection.

Forward selection: start with an empty model and the most significant
variable is included in each step
Backward elimination: start with a full model and the variable with the highest p-

value is excluded in each step.
Backward elimination is to be preferred as this takes all possible associations into account.
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Step 1: perform a logistic regression model using backward elimination

Analyze > Regression > Binary Logistics

i Logistic Regression @

—— e Categorical...
ol 1dentification [PID] - |jj Actinic keratosis yes/na [AK_binary] |
&5 Presence of actinic keratoses (4. Block 1 of 1 Save...
3 seccansn
&% Age atfull body skin examinatio. . Next -
{I Age ini categories [Age_caf] Covariates: T ST
{I Highest education completed, c... E der(Cat

ender(Ca -

& Length (m) [Length]

! ; Age
Weight (ka) [Weight .
& Weiaht (kg) [Weight] s SES_cat(Cat)

& Body Mass Index [BM]]

&; Ever smoker or not [Smoking] :.emth

{I Baldness [Baldness] Weight hal
Haircolor [Haircolor : 7

&) [ ] Method: |Enter o

&; Skincolor [Skincolor]
& Evecolor [Eyecalor] Enter

Sel
: " Forward: Conditional
d:l Based on hair, skin and eye col... |:
Forward: LR

d:l Glogau [Glogau] hd - & Wald
orward: Wa
Backward: Conditional
Backward: LR

WMB%MM:WM

Choose Backward: LR, which means Likelihood Ratio and refers to the method of how the p-
value is calculated.

Include the following variables: Gender Age SES_cat Length Weight Smoking Baldness
Skincolor Sunburn. Specify all categorical variables and change the reference category for
gender into the first category.

Go to ‘options’ and have a look at the stopping rules (p-values) for a forward selection (entry
= PIN(0.05) ) and a backward elimination (removal =POUT(0.10)).

LOGISTIC REGRESSION VARIABLES AK_bhinary

/IMETHOD=BSTEP(LR) Gender Age SES_cat Length Weight Smoking Baldness Skincolor
Sunburn

/CONTRAST (Gender)=Indicator(1)

/CONTRAST (SES_cat)=Indicator

/CONTRAST (Smoking)=Indicator

/CONTRAST (Baldness)=Indicator

/CONTRAST (Skincolor)=Indicator

/CONTRAST (Sunburn)=Indicator

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Step 2: Interpret the output
In block 1 you see step 1 until step 5 for each table. ‘Look at the variables in the equation
table’. Step 1 is the full multivariable model. The variable with the highest p-value in this step

is weight (p=0.996), thus this term is removed and all OR and p-values are calculated again in
step 2. Smoking has the highest p-value in step 2 (p=0.456) and is subsequently removed. The
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final model is the model as calculated in step 5 where none of the variables has a p-value
above 0.10. This stopping rules can be changed. In the output you can see that the p-value of
skin color is 0.107. You may wonder, why this variable has not been removed. This p-value is
based on the Wald test statistic, while we have based the backward elimination on p-value
from the Likelihood Ratio test statistic.

How many variables can be screened for an association based on the sample size to prevent
overfitting?

Overfitting occurs if the model is too complex and the sample size too small. This leads to too
optimistic regression coefficients in a prediction model and future observations will not be
correctly predicted.

Each regression coefficient (B) is also called a parameter and a degree of freedom (df) which
is spend. A categorical variable with 3 categories (e.g. baldness) has 2 3’s and thus 2 df.

Use the following formulas to calculate the number of df that can be spend on regression
modelling. Note that these include all variables screened for association, thus not only those
included in the final model.

total sample size

Linear regression: T
min(cases,controls)

10
Cox proportional hazards regression (survival analysis):

Logistic regression:
number of events
10

Example: a case-control study with 600 cases and 200 controls can spend 20 df for prediction
modelling. A more stringent approach would be to divide by 20 instead of 10.
(source: F. Harrell, Regression Modelling Strategies)

4.5* Goodness of fit measures

Measures of model performance includes both measures of discrimination (how well can the
model discriminate between those with and without the outcome) and calibration (agreement
between observed and predicted values). An easy way to interpret measure of overall
performance is the R%. Nagelkerke’s R has been mentioned in paragraph 4.3.

A widely used method as a measure of discrimination is the receiver operating curve (ROC)
curve. The true positive rate (sensitivity) is plotted against the false positive rate (1-
specificity) for each cut-off value of the predicted probability.

To use this function in SPSS you need to save the predicted probabilities of the logistic
regression model at ‘save’ and tick the box ‘probabilities’ of ‘Predicted Values. A new
variable (PRE_1) will appear in the dataset.

Step 1. Fit a model with Age only and fit a model with Gender Age Baldness Skincolor
Sunburn and save the predicted probabilities of both models.

Step 2: Make a ROC curve of both models

Analyze > ROC Curve
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{5 ROC Curve : (S
TestVariable: -
= -Qpnons...

,{I Identification [PID] |=

f Predicted probability [PRE_1]
&5 Presence of actin...

&b Sex[Gender] 1
& Age atfull body s...
d:IAge ini categorie...
d:l Highest educatio...
& Length (m)[Leng...

State Variable:
| % Actinic keratosis yesino [AK_.. |

& Weight (kg) Weig .. Value of State Variable:
&’ Body Mass Index ...

& Ever smokerorn... Display

JHl Baldness [Baldn... [ ROC Curve

&b Haircolor [Haircal...
&> Skincolor [Skinco...
& Eyecolor [Eyecolor]
d:l Based on hair, sk... [+

[+ With diagonal reference line
| Standard error and confidence interval

| Coordinate points ofthe ROC Curve

(Lo ) Cpate) (et cancr) s )

Use PRE_1 (or PRE_2) as test variable and the state variable is AK, indicate that 1 is the
value which represents AK. Ask for a diagonal reference line as well.

Step 3: Interpret the output

ROC Curve ROC Curve

Sensitivity
o
&
i
Sensitivity
o
®

=)

e
i
)
=

T T T T 00 T T T T
00 02 04 06 08 10 00 0z 04 06 08 10

1 - Specificity 1 - Specificity

Diagonal segments are produced by ties, Diagonal segments are produced by ties.

The Area Under the Curve (AUC) reflects how well the model discriminates between patients
with and without AK. The diagonal (green line) represents an AUC of 0.50, which means that
you might as well flip a coin. On the left side the ROC curve of the model with age only is
shown. This has a AUC of 0.628, which is not very good. The model which includes age,
gender, skin color, baldness and sunburn has an AUC of 0.716, which represents acceptable
discrimination between patients with and without AK based on the model.

Sometimes the following conventions are used:

AUC>0.7: acceptable discrimination

AUC>0.8: excellent discrimination

AUC>0.9: outstanding discrimination (very unusual)
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4.6* Conditional Logistic regression

Case-control studies can be matched on confounding factors. In this dataset each patient with
AK was matched to 2 control participants of the same age and sex without AK.

The matching variables (age and gender) should not be included in the regression model. The
confounders were taken into account by study design and statistical adjustment is therefore
not necessary and incorrect. Possible interaction with the matching variables can be taken into
account in the analysis.

Conditional logistic regression should be performed with a trick in SPSS. Each case-control
(or case-2 controls) pair is regarded as one stratum. The analysis should be performed using
Cox proportional hazards regression

Step 1: select all patients who are included in the nested matched case-control study.
(match_id not equal to 0)

Data > Select Cases
Step 2: calculate a time variable which is 1 for each subject.
Transform > Compute variable
Step 3: Perform a conditional regression model with baldness and skin color

Analyze > Survival > Cox Regression

,____ﬁ'_l Cox Regression =
= Cat -
£l Identification [PID] 2 | (@ Time |
&b Presence of actinic keratoses (AK)? If so, tota... stat
atus:
b g = I
& Age atfull body skin examination [Age] AK_binary(1)
gl Age ini categories [Age_cat] Options...
ol Highest education completed, categorically[.. Bootstrap..
& Length (m) [Length] Block 1 of 1
& Weight (kg) [Weight] .
& Body Mass Index [BMI] =€
ﬁ Ever smoker or not [Smaking] Covariates:
Baldness [Baldness]
Bald Cat
&5 Haircolor [Haircolor] S:ingjlift(c:t}}
&5 Skincolor [Skincolor]
& Evecolar [Eyecolar]
d:l Based on hair, skin and eye color 0 Light 1 a... -
Method: |Enter |
,{I Glogau [Glogau] =
o7l Mevi [Nevi] T
Usally wearing sunglasses or hat with larger... =
%ny g_g_L_m i n g hd hd |$ Matched 1:2 on age and gender [match_id] |
[ OK ][ Paste ][ Reset ][Cancel][ Help ]

Ask for 95% CI of Exp(B) at ‘options’ and do not forget to specify the categorical variables.
Step 4: Interpret the output.

In the stratum table you can see the number of pairs (n=48) and the number of cases (event=1)
and controls (censored=2). .
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Write down the number of pairs with only 1 control and the calculated OR. What is the
difference with the OR obtained in paragraph 4.3 for the same variables? And what is the
reason for this difference?

4.7* Ordinal and multinomial regression

The number of AK was also assessed in categories (no AK[0], 1-3 AK[1], 4-9 AK[2], >10
AK]J3]). A lot of information is lost by reducing this information to a binary variable (AK
yes/no). Regression analysis with multiple outcome categories is also possible.

Ordinal regression
Ordinal regression is also called the proportional odds model. Ordinal regression assumes that
the odds ratio is equal between every cut-off value of the categories:

OR O vs 1+2+3
OR 0+1vs 2+3
OR0+1+2vs 3

This assumption can be tested using the test of parallel lines. The Null hypothesis of the test
of parallel lines is that the regression coefficient (B) is equal across the outcome categories.

Analyze > Regression > Ordinal

Step 1: First select all patients with a value of AK which is not missing (both system and user
missing).

Step 2: Perform an ordinal regression. Use the number of AK in categories as outcome
variable and baldness as independent variable (Factor). Go to ‘output’ and select the test of
parallel lines. Note that SPSS calls continues variables ‘covariates’ and categorical variables
‘factors’.

Step 3: Interpret the output.

Parameter Estimates

95% Confidence Interval

Estimate | Std. Error Wald df Sig. Lower Bound | Upper Bound

Threshold  [AK=0] 1,003 086 | 108,050 1 000 814 1,182

Ak =1] 2,199 123 | 37783 1 000 1,957 2,44

[Ak = 2] 3,154 B2 | 378,443 1 000 2,841 3,478

Location [Baldness=1] 1,660 a0 76,625 1 000 1,289 2,032

[Baldness=2] 325 184 3128 1 077 -035 685
[Baldness=3] o ]

Link function: Logit.
a. This parameteris setto zero because itis redundant.
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Test of Parallel Lines®

-2 Log
Madel Likelihood Chi-Square df Sig.
Mull Hypothesis 63,1749
General 43700 24,4749 4 000
The null hypothesis states that the location parameters (slope

coefficients) are the same across response categories.
a. Link function: Logit.

Note: SPSS always takes the last category as reference category and only LN(odds) estimates
are provided. The exponent of the estimates should be taken to calculate the OR.

The OR of medium baldness compared to no baldness is e

value of the categories of number of AK.

0.325_

1.38 Dbetween every cut-off

However, the p-value of the test of parallel lines is <0.001 and the null hypothesis is rejected.
The proportional odds assumption is not fulfilled and an ordinal regression may not be the

best model.

Multinomial regression

If this assumption does not hold a multinomial regression may be more appropriate. A
multinomial regression provides an OR for each category compared to a reference category:

OR1vsO0
OR2vs0
OR3vsO0

Analyze > Regression > Multinomial Logistic

Step 1: Perform the analysis. Use the number of AK in categories as a dependent variable.

Select the first category as the reference category and use baldness as a factor.

Step 2: Interpret the output.

Parameter Estimates

Presence of actinic keratoses (AK)? If so, total 95% Confidence Interval for Exp
number?? (B)
B Std. Errar Wald df Sig. Exp(B) Lower Bound Upper Bound
yes, 1-3 Intercept -1,258 108 137,078 1 000
[Baldness=1] 266 283 883 1 347 1,305 744 2,272
[Baldness=2] -037 227 027 1 869 963 618 1,502
[Baldness=3] o® . . 0 .
yes, 4-9 Intercept =271 203 179,122 1 000
[Baldness=1] 1,900 318 35,658 1 000 6,684 3,683 12,468
[Baldness=2] 721 ,335 4,639 1 031 2,087 1,067 3,964
[Baldness=3] o® . . 0 .
yes, 10 or more Intercept -3,404 282 | 145766 1 oo
[Baldness=1] 2,849 361 62,303 1 000 17,266 8811 35028
[Baldness=2] 944 434 4741 1 029 2,571 1,099 6,014
Baldness=3] o® 0

<5 The reference category is: nﬁ)

h. This parameteris setto zero hecause it is redundant.
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The reference category is indicated below the table. Odds ratio are directly provided. Note
that the last categories of the independent variables (factors) are the reference categories. For
example the OR of 4-9 AK vs no AK is 6.7 (95% CI 3.6-12.5) for severe baldness compared
to no baldness.
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Assignment 4-1 Logistic Regression - basic

Data: actinic keratosis (AK)

More than 800 people were screened on the presence of actinic keratosis. The number of
actinic keratosis was registered as well as potential risk factors for the development of actinic
keratosis.

1. Calculate the OR of ever smoking vs never smoking from the 2x2 table below.

Bver smoker or not * Actinic keratosis yes/no Crosstabulation

Count
Actinic keratosis yes/ino
Mo Yes Total
Ever smoker ornot  missing 3 H) a
aver 37a 141 5649
never 181 ar 268
Total 562 283 g45

2. Perform an univariable binary logistic regression model with smoking as an independent
predictor and perform an age and sex adjusted model. Provide the univariable and adjusted
OR for ever smoking vs never smoking and their 95% CI.

3a.Are age, sex, socioeconomic status, smoking, baldness and skin color independent risk
factors for actinic keratosis? Provide the p-value of each variable.

3b.What is the adjusted OR (95% CI) of a high socioeconomic status vs a low socioeconomic
status?

3c.What is the adjusted OR (95% CI) for a 10-year increase in age?
4. Is the risk associated with ageing higher in smokers than in non-smokers?
5. Does the including ‘ever lived in a sunny country for > 1 year’ make a statistical significant

contribution to prediction AK risk of the model in question 3a? Provide the p-value and the
improvement in explained variance.
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Assignment 4-2 Logistic Regression - advanced

1. Calculate the 95% CI for the OR of psoriatic arthritis of females vs males in paragraph 4.1

Data: actinic keratosis (AK)

More than 800 people were screened on the presence of actinic keratosis. The number of
actinic keratosis was registered as well as potential risk factors for the development of actinic
keratosis.

2. Perform a backward elimination binary logistic regression model using age, sex, baldness,
smoking, BMI, skin color, hatglasses and sunburn. Define the categorical covariates correctly.
Use a p-value of 0.05 for backward elimination. Which variables are included in the final
model?

3. Start with the variables included in the final model obtained in question 2. Is the risk
increase per year of age higher among those people who lived in a sunny country for >1 year?
Provide the test and the p-value.

4. Provide a measure of discrimination of the final model in question 2. What is your opinion
about the discrimination of this model.

5. Include the variable which indicates if people worked outdoors in the final model of
question 2. What is the improvement in overall goodness of fit and discrimination?

6. Fit an univariable proportional odds model (ordinal regression) for smoking and number of
AK. 6a. Is the proportional odds assumption fulfilled? What is the test and the null
hypothesis?

6b.1f the assumption is fulfilled, provide the OR and its interpretation.

7. Fit a multivariable multinomial logistic regression model for number of AK including age,
sex and baldness.

7a. Is the risk on >10 AK higher among males or females adjusted for the other covariates
(both categorical and continuous covariates)? Provide the OR of males vs females and 95%
Cl.

7b. Is baldness independently related with the risk on the number of AK? Provide the overall
p-value.
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Chapter S Survival Analysis: Kaplan Meier

Data: Survival
The survival of 15 cancer patients from a randomized controlled trial was registered. Seven
patients received treatment and 8 patients received placebo.

5.1 What is survival analysis?

In survival analyses the time to the event (e.g. death, disease, recurrence) is analysed, rather
than having the event or not , like in a logistic regression analysis. An event is also called a
failure. In survival analysis we have to deal with censored data, meaning that we have some
information about the survival time, but we don’t know the survival time exactly.

There are several reasons for censoring:
1. the patient has reached the end of the study without experiencing the event
2. the patient is lost to follow up
3. the patient withdraws from the study without experiencing the event.

End of study

10 ° A D =Death
o | Lfu = Lostto follow up
9 * D | A =Alive
8 o— | LfU |
|
" ° {0
6 . LA
5 ° 1D |
4 (3 : A
3 . | LfU !
2 . | |
1 |e D :
|

The model assumption of a Kaplan-Meier curve is ‘independent censoring’. This means that
we assume that patients who are censored have the same probability of experiencing the event
of interest as those who remain in the study. This assumption cannot be tested.

Although patients enter the study throughout the calendar time, we assume that patients who
are recruited early have the same survival as those who were recruited later. This can be
tested. The study entry is time (t)=0. The event is coded as 1 and the censored observation as
0 (either lost to follow up, withdrawals, or end of study). Thus, we have two outcome
variables in survival analysis: the follow-up time and a variable, which indicates failure or
censoring.
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1 (death)
0 (censored)

® | A=0

° | D=1

— Lfu=0

° | PEH

® { A=0
¢ | D=1

™ A=0
. ILfU=0

a ' D=1
3 D=1

Time (Since study entry) !

5.2 Calculate Kaplan-Meier survival estimate

A Kaplan-Meier curve can be easily calculated by hand. Consider the following survival

times:

6*,8,15,15,19*,20,22,25,32*,36*,41*,42* 48*,48,52*

An asterisk (*) indicates that the patient has been censored. All other patients died. Finish the
following survival table to calculate the Kaplan-Meier (KM) survival estimates

ti Ni= 0i= Si= Si/Ni KM survival

Time | Patients at | Patient with Patients who estimate
risk at t failure at t; survive after t;

t=8 14 1 13 13/14=0.929 0.929
t=15 13 2 11 11/13=0.846 0.846*0.929=0.786
t=20
t=22
t=25
t=48

5.3 Kaplan — Meier curve in SPSS

The obtained KM survival estimates are usually represented in a curve. The curve starts at
t=0, where the survival is 100%. Each time an event happens the curve drops to the next KM
survival estimate.

Step 1: Open the survival data of chapter 5 and inspect the variables and go to:

Analyze > Survival > Kaplan Meier
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't,-'l Kaplan-Meier =

Time:

93 Survival status [Surv_status] - |£j Survival time in months [Surv_time] |
Save...
&b Sex Status: —
) . [vital_status(1) |
"@ Kaplan-Meier: Define Event For Status Va... &J
Define Event...

Value(s)indicating event has occurred

! . Factor:
@ Singie value: [+ | | |

@ Range ofvalues:

Strata:
© List of values: | |
Label Cases by
=] |

(Lo ) () et canc i

[Cor'm'nue][ Cancel ][ Help ]

Define the two outcome variables: the survival time and failure/censoring variable. Go to
‘options and ask for a survival table, mean and median survival and a survival plot.

Step 2: Interpret the output.

Survival Table: Look at the survival table. Compare the table to the obtained KM estimates in
paragraph 5.2.

Survival Plot: The survival plot is shown below. Compare the plot to the table. The curve
drops at the time of each event. SPSS also shows when a patient has been censored.

Mean and Median Survival: The median survival is the time when the survival probability is
50%. The dotted red line indicates 50%. Although the actual survival is 0.367 at t=48, the
curve does not cross the red line before this time point and therefore the median survival time
is 48 months.

The mean survival is calculated by using the area under the curve. Survival times are
frequently highly skewed data and therefore the median survival is a better measure than the
mean survival.

Survival Function

—TSurvival Function
1.0 —t— Censored

05
+ o+

Cum Survival

0,2

Survival time in months
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5.4 Logrank test

In most questions we are not interested in overall survival, but we would like to compare the
survival between groups. Consider the following research question:

5.4. Is the survival of patients who received treatment better compared to those who
received placebo?

To answer this question we will use the logrank test. The logrank test compares the number of
events at every time points of the survival curve. The null hypothesis is as follows:

Ho: there is no difference in survival between the groups
Step 1: Perform the logrank test in SPSS
Analyze > Survival > Kaplan Meier

To perform the logrank test in SPSS, use Factor as grouping variable. Go to ‘Compare Factor’
and tick the box of Log rank.

¢E Kaplan-Meier B3
: .
&5 Survival status [Surv_status] | &5 Sunvival time in months [Surv_time] |
Save...
Status: =
*  [vital_stats(1) |
— ﬂ'ﬂ Kaplan-Meier: Compare Factor Levels X
==
Test Statistics
Factor: - -
b2 | & Treatment | r || Breslow [ Tarone-Ware
Strata: ]
| = | [[] Linear trend for factor levels
@ Pooled over strata @ Pairwise over strata
Lanel Cases by. © For each stratum © Pairwise for each stratum
| |
[ OK ][ Paste }[ Reset ][Cancel][ Help ] [Cﬂﬂﬁ”UE][ Cancel ][ Help }
Step 2: Interpret the output
Survival Functions
104 Treatment
' —Placebo
1 Treatment
- Placebo-censored
+ + +H- +—t - Treatment-censored
08
Owverall Comparisons
T o6 Chi-Sguare df Sig.
<
@ Log Rank (Mantel-Cox) 5,154 1 023
£
3 04 Test of equality of survival distributions for the different levels
of Treatment.
0.2+
0,0

Survival time in months

The p-value of the logrank test is 0.023, thus the null hypothesis can be rejected and the
survival of the treatment and the placebo group is not equal. The survival plot shows that the
survival of the treatment group is better compared to the placebo group.
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Assignment 5-1 Kaplan-Meier curve and Logrank test

Data: melanoma

For this assignment we have created an adapted dataset of melanoma patients selected from a
population-based database. There is information on age and date of diagnosis, sex, stage, vital

status and survival time.

1. Inspect the data: which variables are in there, how many patients are included? Which are

the variables you would need for a survival analysis?

2. Make a Kaplan-Meier curve. If you want to limit the output, you can choose not to display

the survival table in the ‘Options” menu. What is the mean and median survival time of the
melanoma patients?

You have now made the first K-M plot for overall survival, but we might be more interested

in some sub-analyses, comparing the survival of melanoma patients by gender, nodal stage
and metastatic stage.

3. Compare melanoma survival by sex: who have a better survival? How large is the
difference? Is this difference significant? Define the null hypothesis of the logrank test.

4a. Do the same for survival by nodal stage. What can you conclude about patients with
stage X? how would you describe them in terms of prognosis? Does this make sense
clinically?

4b. Repeat the analysis, but perform also a trend test. Go to ‘Compare Factor’ and choose
‘Logrank’ and ‘Linear trend for factor levels’. What can you conclude from this test?

5. Compare melanoma survival by metastatic stage: what do you conclude with
regards to patient with stage X? Does this make sense clinically?
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Chapter 6* Cox proportional hazards regression

Data: melanoma

In this chapter we will continue with the data presented in assignment 5.1. There is
information on age and date of diagnosis, sex, stage, vital status and survival time. In
addition, data on medication use (beta-blockers) has been collected.

6.1* What is a Cox proportional hazards model?

We have seen, using the Kaplan-Meier method, that survival of melanoma differs by sex and
stage. However, using this method, it is not possible to look at more than one variable at the
time, unless you make many strata, which is usually practically impossible because you would
need very large datasets. Cox proportional hazards method makes it possible to make
multivariable models. Cox proportional hazards model provides hazard ratios. The hazard is
the probability of experiencing an event at At, conditional on being event-free at the
beginning of At. The hazard is thus a conditional probability per time unit:

1.0

AS
0.8

At

0.2

Time ———

Figure 6.1: the hazard is the probability of experiencing the event at At, given that the individual is alive at the
beginning of At.

Proportional hazards assumption

In a Cox proportional hazards model, we assume that the hazard ratio is constant over time.
This means that hazards should be proportional over time. This assumption can be tested,
which is shown in paragraph 6.2. The baseline hazard function does not need to be specified
and can be any shape as shown in figure 6.2.

3

.25

~

Ln(hazard)

0 2 4 6 8
Follow Up Time (Years)

Figure 6.2: The baseline In(hazard) function and the proportional hazards assumption.
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The hazard ratio is calculated by taking the exponent of the p (HR = e#). As seen in Figure
6.2 the B is independent of the shape of the hazard function and of time.

Non-proportional hazards

A possible problem in Cox PH regression is violation of the proportional hazards assumption.
As can be seen in Figure 6.3 the HRgroup B vscroup A 1S below 1 at the beginning of follow up and
above 1 at the end of follow up. It makes no sense to estimate a HR over the whole time
period.

Group A

A

Proportion Surviving

3>

Time
Figure 6.3: Nonproportional hazards Source: Concato et al, Ann.Intern. Med. 1993

There are several options when the proportional hazards assumption is not met:
-fit time-specific models and thereby calculate time-interval specific hazards.
-stratify on the variable with non-proportional hazards

-include time dependent covariates.

The Cox proportional hazards model

The hazard at time=t is a product of the baseline hazard function (hy(t)) and the exponential of
the covariates (X’s) and the regression coefficients (3’s):

h(t) = ho(t)e B1X1+ BoXo+ B3 X3++ B Xk

The baseline hazard function (hg is not specified, which makes the Cox PH model a semi-
parametric model. The baseline hazard function does not need to be specified to estimate the
hazard ratio, because the baseline hazard cancels out of the equation.

Consider the HR of females vs males:

hazardmqies(t) = ho(t)e hta = ho(D)e Al = ho(De A
hazardgemates(t) = ho()e FaXs = ho(D)e A0 = ho(t)e®

RAGEE

HR=—“—=¢h
ho(ed  ©
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6.2* The proportional hazards assumption

We would like to estimate the HR of females vs. males for melanoma survival, but we need to

check the proportional hazards assumption first. There are multiple ways of checking the
assumption:

-Visually using logminuslog (LML) survival plots
-Goodness of fit test using Schoenfeld residuals.
-Time-dependent covariates

The easiest way is to use LML survival plots for categorical variables. You don’t need to
perform all methods. Schoenfeld residuals and time-dependent variables can be used for

continuous covariates. Combine an overall goodness of fit test, such as Schoenfeld residuals,
with a visual inspection of LML plot.

Step 1: Perform the Cox PH model in SPSS
Analyze > Survival > Cox Regression
Specify the survival time variable, the censoring/failure variable. Define the value of the

event. Sex is the covariate. Change the reference category to the first value, using

‘categorical’. Ask for LogMinusLog (LML) plots by sex. Go to ‘Save’ and save the partial
residuals (Schoenfeld residuals).

#i5 Cox Regression

Step 2: Inspect the LML survival plot

=L
# Cox Regression: Plats ]
- - Categarical... Plot Type
@a order of tumour flumnr] - | & sunival time (in days) [suntime] ‘ — — -
& sexsex] ] Sunival [] Hazard ¥/ Log minus log
42 incidence date [incdat] - Stalus. [ﬁSave ] One minus sunival
& age at diagnosis [agedy] | status(1) ‘ =
> Options. Covariate Values Plotted at:
@a path t-stage (based on Breslow) [pf] Opt
&
qﬂ nodal stage [pn] ) Bootstrap...
&4 metastatic stage [pm] Block 1 of 1
4 Breslow thickness [oreslow] = Separate Lines for
42 date of death [datedeath] sex (Cal) (Mean)
43 date of last contact [fupdat] Covanstes:
sex(Caty f
Change Value
6
Method: |Enter (]
s
0K [ Paste ][ Reset ][Cance\][ Help ]

This is the easiest way to check the assumption. There is no evidence that the LML survival
plots cross each other in time. They run perfectly parallel.
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LML Function for patterns 1 -2

Sex
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female

Log minus log
£
|

T T T T T T
0 1000 2000 3000 4000 5000 6000
survival time (in days)

Step 3: Test the PH assumption using Schoenfeld residuals.
This is 3-step process:
1. Obtain Schoenfeld residuals
2. Rank failure times
3. Test the correlation between residuals and failure times.
The null hypothesis is that there is no correlation between the residuals and the failure times.

The Schoenfeld residuals have been saved in the variable PR1_1, which should have appeared
in the dataset. Select all patients with the event (status=1):

Data > Select cases
Rank the survival time
Transform > Rank Cases

Move survtime to the variable box. By default 1 is already assigned to the smallest value. A
new ranking variable appears in the data ‘Rsurvtime’.

Correlate the Schoenfeld residuals to the rank of the survival time

Analyze > Correlate > Bivariate
The Pearsons correlation coefficient is 0.043, with a p-value of 0.298. The null hypothesis is
not rejected, thus we can conclude that the hazards are proportional.

Don’t forget to turn the filter off.

Step 4: Test the PH assumption by using time-dependent covariates.
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We assume that the HR is equal over time. Including a variable in the Cox PH model which
describes the change of the HR over time should have a regression coefficient of 0.

First we need to calculate a new variable of the product of (a function of) time and the
covariate. Usually time or LN(time) are commonly used choices.

Transform > Compute variable

Make a new variable ‘LNtime_sex’ which is the product of LN(survtime) and sex. Include
this variable in a new Cox PH regression model and test if the B of this variable is equal to 0.

Analyze > Survival > Cox Regression

Specify a Cox PH regression model with sex and the LNtime_sex as covariates

Variables in the Equation

B SE Wald df Sig. Exp(B)
Sex 24 557 7958 | 944850 1 000 4 625E+10
LMtime_sex -3,654 J16 | 943,22 1 000 028

The p-value of the time-dependent variable is <0.001, which indicates that the proportional
hazards assumption is violated. However, a disadvantage of this method, is that the
significance depends on the choice of the function of time, which may lead to different
conclusions. Moreover, a small deviation in a large dataset (n=592) may lead to a statistical
significant deviation of the PH assumption, which may not be clinically relevant.

6.3* Univariable Cox proportional hazards regression

Based on the LML survival plot we conclude that the PH assumption is fulfilled.
6.3 What is the hazard ratio (HR) of females vs males of melanoma survival?
Analyze > Survival > Cox Regression

In addition to the model in paragraph 6.3, ask for 95% CI of Exp(B).

Variables in the Equation

85,0% Clfor Exp(E)
B SE Wald df 3ig. Exp(B) Lower Upper

Sex - 770 083 85,870 1 ,000 A63 ,3493 545

From the output we obtain a HR of females vs males of 0.463 (95% CI: 0.393-0.545).
Females are thus at lower risk of death compared to males.
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6.4* Multivariable Cox proportional hazard regression

One could reason for the better survival of females, could be because women pay more

attention to their skin and present clinically with lower stage tumours. Using our data, we can

verify if this is true or not: we can make a multivariable model including sex, but also the
stage variables. In this way, the data is ‘corrected’ for stage.

6.4 Is the better survival of females caused by lower stage at diagnosis?

Perform a multivariable Cox PH regression model including sex, Breslow thickness, Nodal
stage and Metastatic stage. Do not use pT pN and pM as these are string variables. Breslow
thickness is equal to pT and is already a continus variable. Recode the other stage variables.

Transform > Recode into different variables

RECODE pt ('1'=1) ('2'=2) ('3'=3) ('4'=4) INTO T_stage.
VARIABLE LABELS T_stage 'T_stage numeric'.
VALUE LABELS T stage1'T1'2 'T2'3'T3'4 'T4".
EXECUTE.

RECODE pn ('0'=0) ('1'=1) ('2'=1) ("X'=0) INTO Nodal_status.

VARIABLE LABELS Nodal_status 'Nodal stage numeric'.

VALUE LABELS Nodal_status 0 'No nodal metastasis' 1 'Nodal metastasis'.
EXECUTE.

RECODE pm ('0'=0) ('1'=1) ('X'=0) INTO Distant_metastasis.
VARIABLE LABELS Distant_metastasis 'Distant metastasis numeric'.
VALUE LABELS Distant_metastasis 0 'No distant metastasis' 1 'distant metastasis'.
EXECUTE.
Analyze > Survival > Cox Regression

Use sex, T-stage, nodal and distant metastasis as covariates. The LML should be checked fo
T-stage, nodal and distant metastasis.

Variables in the Equation

r

95,0% Clfor Exp(B)

B SE Wald df Sig. Exp(B) Lower Upper
seX - 619 084 54,370 1 000 538 45T B35
T_stage 275 761 3 ,0oo
T_stage(1) 619 206 5,989 1 003 1,857 1,239 2,782
T_stage(2) 1,358 RN 50,786 1 000 3,882 2,678 5655
T_stage(3) 2,363 186 | 145350 1 000 10,628 7,237 15,607
Modal_status Ralila 128 18,809 1 ,000 1,741 1,355 2,238
Distant_metastasis 1,586 211 56,632 1 ,000 4883 323 7,374

The HR for sex is still statistically significant after adjusting for stage at diagnosis. We can
conclude that the survival advantage of females is not caused by lower stage at diagnosis.
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6.5* Time-varying covariates

Covariates which are known at time of diagnosis may change during follow up time. Other
variable do not change (e.g. sex) and are called time-fixed covariates. Some covariates, such
as drug exposure can be analysed as a time-fixed or a time-varying covariate in time-to-event
analyses. The use of a time-fixed covariate assumes that exposure is measurable at baseline
and remains constant over time (e.g. drug user at diagnosis yes/no). Changes in exposure
status during follow up can be taken into account by using a time-varying covariate for
exposure (e.g. drug user after diagnosis yes/no). Incorrect use of a time-fixed exposure
variable in a Cox proportional hazard (PH) model, or other time-to-event models, can lead to
biased estimates, due to immortal time bias. Samy Suissa wrote some excellent papers about
this subject.

In this example drug exposure will be analysed correctly as time-fixed covariate (6.5a). In that
case only drug use at diagnosis or before diagnosis can be taken into account. Subsequently
drug use will be analysed while changing over time (6.5b).

Time-fixed covariate
Betablockers may have a survival advantage by preventing melanoma metastasis. Betablocker
use has been assessed at the date of diagnosis.

6.5a Does betablocker use before diagnosis prolong survival among melanoma patients?
Step 1: Perform a Cox PH regression for drug exposure before diagnosis
Analaze > Survival > Cox Regression

Adjust the analysis for age, sex and all TNM variables.
Ho: the regression coefficient for betablocker use before diagnosis is equal to 0.

Step 2: Interpret the output.

The HR is 1.097 (95% CI: 0.909-1.323) with a p-value of 0.336. The null hypothesis can thus
not be rejected. Adjusted for possible confounders betablocker use before diagnosis does not
influence survival. This may not surprise you, as patients may start using betablockers after
diagnosis as well, who have been analysed as a non-user in this analysis. It would be more
close to reality to take them into account as a non-user until they start with betablockers and
analyse them as betablocker user afterwards. This will be done in the next analyses.

Time-varying covariate.
The variable BB_start_after_diagnosis indicates when patients started using the drug after
diagnosis.

6.5b: Does betablocker use after diagnosis prolong survival among melanoma patients?
Step 1: Make a crosstab between betablocker use before and after diagnosis.

Analyze > Descriptive statistics > Crosstabs
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Start date of hetablocker use after diagnosis * ever hetablocker use before
diagnosis Crosstabulation

Count
ever betablocker use befoare
diagnosis
Mo Yes Total

Start date of betablocker o0 2 445 447
use after diagnosis 30,00 11 0 1

90,00 2 0 2

180,00 2 0 2

365,00 0 2

730,00 0 3
Total 22 445 467

This table shows you that some patients who did not use the drug before diagnosis, started
using the drug after diagnosis, at day 30, day 90, day 180, day 365 or day 730. All patients
who used the drug before diagnosis continued after diagnosis and are users since day 0
(baseline=diagnosis). In the case processing summary you can see that 81.4% have a missing
value on this variable. These are the non-users.

SPSS creates an internal time value T_, which can be used to define time-varying covariates.
The patient who is a non-user at diagnosis and start using betablockers at day 18. This patient
should get a value 0 (non-user) before day 18 and after day 18 the value 1 (user).

Expressed in syntax:

DO IF T_ > start_date_after_diagnosis.
COMPUTE BB_user=1.

ELSE.

COMPUTE BB_user=0.

END IF.

EXECUTE.

The non-users should not have a missing value, because they will be excluded from the
analysis. You can use trick to assign the value 0 to the non-users. They should get an
extremely high value, e.g. 1,000,000 days, which is higher than the max. follow up time. The
max. follow up time in our data is 5393. T_ will never exceed 5393, thus a patient who has a
value of 1,000,000 days will be assigned the value 0 in any case according to the
aforementioned syntax.

Step 2: Assign the value 1,000,000 to the non-users after diagnosis.
Create a new variable to prevent mistakes:

DO IF MISSING(BB_start_after_diagnosis).
COMPUTE BB_time_var=1000000.

ELSE.

COMPUTE BB_time_var=BB_start_after_diagnosis.
END IF.

EXECUTE.
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Step 3: Perform the Cox PH regression using time-varying covariate for drug use.

Analyze > Survival > Cox w/Time Dep Cov

Ll

b

l..__;,ej Compute Time-Dependent Covariate

-

&8 Time [T_]

&4 order of tumour ftum...
&b sex(sex

&2 incidence date [incd...
& age atdiagnosis [a...
&4 path t-stage (based ..
&4 nodal stage [pn]

&4 metastatic stage [pm]
& Breslow thickness [...
42 date of death [dated...
42 date of last contact [f...
& vital status [status]
gf survival time (in day...
& ever betablocker us...
& start date of betablo...
&5 T_stage numeric[T...
&5 Nodal stage numeri...
& Distant metastasis ...
& BB_time_var

Expression for T_COV_:

T_=BB_time_var

333
EEE)
333

33393
LELEE

BB

]
i
L
o

Function group:

All

Arithmetic

CDF & Moncentral CDF
Conversion

Current Date/Time
Date Arithmetic

Date Creation

Functions and Special Yariables:

[Eeset ][Cancel][ Help ]

First, the time-dependent covariate has to be created.
T >BB_time_var
is equal to

DO IF T_ > start_date_after_diagnosis.

COMPUTE BB_user=1.

ELSE.

COMPUTE BB_user=0.

END IF.

EXECUTE.
In words: a value 1 is returned at the moment a patient becomes a betablocker user. Before
that time or if the patient doesn’t use betablockers at all, a value 0 is returned.

Now go to model. Subsequently you see a familiar Cox Regression screen. T_COV is the time
dependent covariate that we just created. Include this in the model, together with age, sex, and
the TNM variables.
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i_; Cox Regression

S0

& T_Cov_[T_cov ]
&4 order of tumour ftum...
&b sex [sex]

incidence date [incd. .
g& age at diagnosis [a...
&4 path t-stage (based ..
&4 nodal stage [pn]

&4 metastatic stage [pm]
g& Breslow thickness ...
date of death [dated...
date of last contact[f...
& ever betablocker us...
& Start date of betablo...
&5 T_stage numericT...
&5 Modal stage numeri...
&5 Distant metastasis ...
gﬁ BB_time_var

Time:

| & sunival time (in days) [s.

Status:

| status(1)

Define Event...

Block 1 of 1

Covariates:

sex(Cat)

agedx

T_stage({Cat)
Modal_status(Cat)
Distant_metastasis(Cat)
T_COV_

Method: |EHTEI'

Strata:

[ OK ][ Paste ][ Reset ][Cancel][ Help ]

Categorical...

Important! The timescale of the time-varying covariate should be equal to the timescale of the
time variable used for the Cox analysis. (eg. both days or both years).

Step 4: Interpret the output.

Variables in the Equation

95,0% Clfor Exp(B)
B SE Wald df Sig. Exp(B) Lower Upper
seX - 61 084 61,714 1 000 516 438 608
agedx 038 003 | 183580 1 ,aon 1,040 1,034 1,046
T_stage 165 348 3 oon
T_stage(1) 555 206 7,228 1 007 1,742 1,162 2,610
T_stage(2) 1,169 191 a7 3Ty 1 ,000 3,218 2,212 4681
T_stage(3) 1,924 198 94 367 1 ,000 6,846 4 644 10,092
Modal_status 22 129 31,380 1 ,000 2,058 1,699 2649
Distant_metastasis 1,460 211 47,830 1 000 4 307 2,848 6,515
T_COW_ 102 095 1,165 1 283 1,107 819 1,334

T_COV is the binary time-dependent covariate for beta-blocker use after diagnosis (yes/no).
The HR is 1.107 (95% C1 0.919-1.334), which is almost equal to the results of the time-fixed
covariate analysis. The conclusion remains that betablocker use has no effect on survival.
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How would you test the proportional hazards assumption for this time-dependent covariate.
The solution can be found in the syntax file.
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Suggested Readings:

Books

Petri A and Sabin C (2009), Medical Statistics at a Glance (easy, statistics)

Field A (2013), Discovering statistics using IBM SPSS statistics (easy, SPSS)

Katz MW (2011) Multivariable analysis: a practical guide for clinicians. (easy, multivariable
analysis)

Harrell FE (2001) Regression modeling strategies: with applications to linear

models, logistic regression, and survival analysis. (advanced, regression analysis)
Steyerberg EW (2009) Clinical prediction models: a practical approach to

development, validation, and updating. (advanced, prediction modeling)

Kleinbaum DG and Klein M (2012) Survival analysis, a self-learning text (easy, survival
analysis)

Website

Institute for Digital Research and Education. Statistical computing: http://www.
ats.ucla.edu/stat (easy, output SPSS, STATA, SAS)

Articles
Wakkee M, Hollestein LM, Nijsten T (2014), Research Techniques Made Simple:
Multivariable Analysis, JID (easy, multivariable analysis).

The Statistical Analysis and Methods in the Published Literature (SAMPL) guidelines,
available from www.equator-network.org

Hollestein LM, Nijsten T (2015), Guidelines for statistical reporting in the British Journal of
Dermatology, BJD 2015 Jul 173(1): 3-5
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